If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.567x(5.6 + x) = (4 + -1x)(4.4 + -1x) (5.6 * 0.567x + x * 0.567x) = (4 + -1x)(4.4 + -1x) (3.1752x + 0.567x2) = (4 + -1x)(4.4 + -1x) Multiply (4 + -1x) * (4.4 + -1x) 3.1752x + 0.567x2 = (4(4.4 + -1x) + -1x * (4.4 + -1x)) 3.1752x + 0.567x2 = ((4.4 * 4 + -1x * 4) + -1x * (4.4 + -1x)) 3.1752x + 0.567x2 = ((17.6 + -4x) + -1x * (4.4 + -1x)) 3.1752x + 0.567x2 = (17.6 + -4x + (4.4 * -1x + -1x * -1x)) 3.1752x + 0.567x2 = (17.6 + -4x + (-4.4x + 1x2)) Combine like terms: -4x + -4.4x = -8.4x 3.1752x + 0.567x2 = (17.6 + -8.4x + 1x2) Solving 3.1752x + 0.567x2 = 17.6 + -8.4x + 1x2 Solving for variable 'x'. Reorder the terms: -17.6 + 3.1752x + 8.4x + 0.567x2 + -1x2 = 17.6 + -8.4x + 1x2 + -17.6 + 8.4x + -1x2 Combine like terms: 3.1752x + 8.4x = 11.5752x -17.6 + 11.5752x + 0.567x2 + -1x2 = 17.6 + -8.4x + 1x2 + -17.6 + 8.4x + -1x2 Combine like terms: 0.567x2 + -1x2 = -0.433x2 -17.6 + 11.5752x + -0.433x2 = 17.6 + -8.4x + 1x2 + -17.6 + 8.4x + -1x2 Reorder the terms: -17.6 + 11.5752x + -0.433x2 = 17.6 + -17.6 + -8.4x + 8.4x + 1x2 + -1x2 Combine like terms: 17.6 + -17.6 = 0.0 -17.6 + 11.5752x + -0.433x2 = 0.0 + -8.4x + 8.4x + 1x2 + -1x2 -17.6 + 11.5752x + -0.433x2 = -8.4x + 8.4x + 1x2 + -1x2 Combine like terms: -8.4x + 8.4x = 0.0 -17.6 + 11.5752x + -0.433x2 = 0.0 + 1x2 + -1x2 -17.6 + 11.5752x + -0.433x2 = 1x2 + -1x2 Combine like terms: 1x2 + -1x2 = 0 -17.6 + 11.5752x + -0.433x2 = 0 Begin completing the square. Divide all terms by -0.433 the coefficient of the squared term: Divide each side by '-0.433'. 40.64665127 + -26.73256351x + x2 = 0 Move the constant term to the right: Add '-40.64665127' to each side of the equation. 40.64665127 + -26.73256351x + -40.64665127 + x2 = 0 + -40.64665127 Reorder the terms: 40.64665127 + -40.64665127 + -26.73256351x + x2 = 0 + -40.64665127 Combine like terms: 40.64665127 + -40.64665127 = 0.00000000 0.00000000 + -26.73256351x + x2 = 0 + -40.64665127 -26.73256351x + x2 = 0 + -40.64665127 Combine like terms: 0 + -40.64665127 = -40.64665127 -26.73256351x + x2 = -40.64665127 The x term is -26.73256351x. Take half its coefficient (-13.36628176). Square it (178.6574881) and add it to both sides. Add '178.6574881' to each side of the equation. -26.73256351x + 178.6574881 + x2 = -40.64665127 + 178.6574881 Reorder the terms: 178.6574881 + -26.73256351x + x2 = -40.64665127 + 178.6574881 Combine like terms: -40.64665127 + 178.6574881 = 138.01083683 178.6574881 + -26.73256351x + x2 = 138.01083683 Factor a perfect square on the left side: (x + -13.36628176)(x + -13.36628176) = 138.01083683 Calculate the square root of the right side: 11.747801362 Break this problem into two subproblems by setting (x + -13.36628176) equal to 11.747801362 and -11.747801362.Subproblem 1
x + -13.36628176 = 11.747801362 Simplifying x + -13.36628176 = 11.747801362 Reorder the terms: -13.36628176 + x = 11.747801362 Solving -13.36628176 + x = 11.747801362 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '13.36628176' to each side of the equation. -13.36628176 + 13.36628176 + x = 11.747801362 + 13.36628176 Combine like terms: -13.36628176 + 13.36628176 = 0.00000000 0.00000000 + x = 11.747801362 + 13.36628176 x = 11.747801362 + 13.36628176 Combine like terms: 11.747801362 + 13.36628176 = 25.114083122 x = 25.114083122 Simplifying x = 25.114083122Subproblem 2
x + -13.36628176 = -11.747801362 Simplifying x + -13.36628176 = -11.747801362 Reorder the terms: -13.36628176 + x = -11.747801362 Solving -13.36628176 + x = -11.747801362 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '13.36628176' to each side of the equation. -13.36628176 + 13.36628176 + x = -11.747801362 + 13.36628176 Combine like terms: -13.36628176 + 13.36628176 = 0.00000000 0.00000000 + x = -11.747801362 + 13.36628176 x = -11.747801362 + 13.36628176 Combine like terms: -11.747801362 + 13.36628176 = 1.618480398 x = 1.618480398 Simplifying x = 1.618480398Solution
The solution to the problem is based on the solutions from the subproblems. x = {25.114083122, 1.618480398}
| 147=7p | | 3(2x-7)=2(2x+4) | | 2xcubed+2solveifx=5 | | 3.6(1+2k)+2=27.7 | | y^3-6y^6=0 | | 7p-(3+4)=-2(-2p-1)+10 | | 11(3x+9)+10x-13= | | 5=10m-20+15m | | 2y^4-16y^2=0 | | 2x+11=6x+18 | | 3a+5b=9 | | 0.8x-5.5=0.1 | | P/12=-1.27 | | 11(3+9)+10x-13= | | .33s+14=26 | | 10+3=62-6 | | -15x+3(5x-4)=-12 | | 35(2Y-1)=7(X+4)+3X | | M/8=16.3 | | 3x-9=6x+33 | | 18.6=6.2a | | 15x-5=2(5x+25) | | 1.8x+(1-x)*0=1 | | 4y-(y+3)=-6 | | 3(k-3.6)=-0.1(k-4.9) | | 8(j+12)+4(k-9)= | | y^4-8y=0 | | 25t=325 | | 85+m=180 | | 2(5-3x)+9s=28 | | 4p-3=2p+13 | | 3x+45-6x=-6x |