0.25x+1/8x=60

Simple and best practice solution for 0.25x+1/8x=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.25x+1/8x=60 equation:



0.25x+1/8x=60
We move all terms to the left:
0.25x+1/8x-(60)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We multiply all the terms by the denominator
(0.25x)*8x-60*8x+1=0
We add all the numbers together, and all the variables
(+0.25x)*8x-60*8x+1=0
We multiply parentheses
0x^2-60*8x+1=0
Wy multiply elements
0x^2-480x+1=0
We add all the numbers together, and all the variables
x^2-480x+1=0
a = 1; b = -480; c = +1;
Δ = b2-4ac
Δ = -4802-4·1·1
Δ = 230396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{230396}=\sqrt{4*57599}=\sqrt{4}*\sqrt{57599}=2\sqrt{57599}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-480)-2\sqrt{57599}}{2*1}=\frac{480-2\sqrt{57599}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-480)+2\sqrt{57599}}{2*1}=\frac{480+2\sqrt{57599}}{2} $

See similar equations:

| -9x-9=x+21 | | -14=2y | | 1/2*t=8 | | 6n=7n-10 | | -5x+35=15 | | 2(-4-7v)+3(3+2v)=1-2v-6v | | 2x+7=-5-4x | | (3y+4)+(4y-34)=180 | | -4(1-3n)+2(n-4)=7n+7n | | 5m+12=9m=16 | | 4/7x+1/7x=41.94 | | 5=2g+1/g | | X+20+10x=2” | | -2x-4x+6=14-6x-5 | | 4.7x+1.7x=41.94 | | 7h=43 | | 6z+1/9=7z+2/9 | | 6-8d=-12 | | 7h—4=39 | | -8+30=3(-5r-4) | | 3/4+4y=24 | | 54=3v+6v | | 29x^2+20x-11=0 | | 2x=64,x | | 11+2*x=17 | | 1/2(h+12)=9 | | .70x+42=27.3 | | 12a-15=8a | | 120+2b4+30b-270=0 | | 2/3x-1/2=-1/6x+2 | | 2(h-3)=18 | | 2z–3=1 |

Equations solver categories