0.25x+1/8x+24x=60

Simple and best practice solution for 0.25x+1/8x+24x=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.25x+1/8x+24x=60 equation:



0.25x+1/8x+24x=60
We move all terms to the left:
0.25x+1/8x+24x-(60)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
24.25x+1/8x-60=0
We multiply all the terms by the denominator
(24.25x)*8x-60*8x+1=0
We add all the numbers together, and all the variables
(+24.25x)*8x-60*8x+1=0
We multiply parentheses
192x^2-60*8x+1=0
Wy multiply elements
192x^2-480x+1=0
a = 192; b = -480; c = +1;
Δ = b2-4ac
Δ = -4802-4·192·1
Δ = 229632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{229632}=\sqrt{256*897}=\sqrt{256}*\sqrt{897}=16\sqrt{897}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-480)-16\sqrt{897}}{2*192}=\frac{480-16\sqrt{897}}{384} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-480)+16\sqrt{897}}{2*192}=\frac{480+16\sqrt{897}}{384} $

See similar equations:

| 3(2x+7)+14=(x+4)-3 | | p-5+13p=-33 | | (x+6)-2=10 | | 2x+3x+x=156 | | 12v-3=2+4 | | 73-x=221 | | 4x+.5(12x-20)=20x | | -b+5+6b=1+5b+3 | | 2p/3-10/3=6 | | 3(2x+7)=3(x+4)-3 | | 16x+25=10x-11 | | 8=8v-6v+12 | | 16p-19-7p=17+6p | | -7.3r-7.1=-3.4r-0.3 | | 3.5-z=2.4 | | -10(8x-10)=510 | | 6x−2(x−5)=22 | | -x²-5x+2=0 | | -2(n+1)=-4(n+2)-4 | | -45=-5w | | y-21=20 | | 6j–4=-14+4j | | 2(4g+7)=2(5g-1)-2g | | -10x+65=6x+44= | | 5c+15=5(c+2)+5 | | 161=-7(3n+8) | | -2.1v-9.1=-2.6v+2.3 | | 2x-20+64=180 | | 6(t-5)=5(t+5) | | -8/5-4v/3=-1/2 | | -7+n/3=-8 | | 9a-4+2(a-11)=23 |

Equations solver categories