0.20x+0.25x(x+40)=0.35(x+80)

Simple and best practice solution for 0.20x+0.25x(x+40)=0.35(x+80) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.20x+0.25x(x+40)=0.35(x+80) equation:



0.20x+0.25x(x+40)=0.35(x+80)
We move all terms to the left:
0.20x+0.25x(x+40)-(0.35(x+80))=0
We multiply parentheses
0x^2+0.20x+0x-(0.35(x+80))=0
We calculate terms in parentheses: -(0.35(x+80)), so:
0.35(x+80)
We multiply parentheses
0.35x+28
Back to the equation:
-(0.35x+28)
We add all the numbers together, and all the variables
x^2+1.2x-(0.35x+28)=0
We get rid of parentheses
x^2+1.2x-0.35x-28=0
We add all the numbers together, and all the variables
x^2+0.85x-28=0
a = 1; b = 0.85; c = -28;
Δ = b2-4ac
Δ = 0.852-4·1·(-28)
Δ = 112.7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.85)-\sqrt{112.7225}}{2*1}=\frac{-0.85-\sqrt{112.7225}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.85)+\sqrt{112.7225}}{2*1}=\frac{-0.85+\sqrt{112.7225}}{2} $

See similar equations:

| 5(p+2)=3p-8 | | –8r+19−10r=–14r−17 | | -2x+3+6x=-6+3x | | 2=n+32 | | h(-1)=4+5 | | -6-7w=2-8w | | m+2m+1=13 | | 9−x=6 | | c=3.25+1+6.50 | | x^2+2 | | x+2x+3x+4=10 | | 2n-3(n-5)=12+2n | | -8/5h=9 | | 10-2p+7=-10-5p | | 11+a=-15 | | 9−n=6 | | 18x-12=6x+42 | | 6x-5x+4=8-2 | | 200÷20x(16÷4)=10 | | 7x-3-2x=3x+7 | | 6k-6=8+8k | | -9(x-4)+9=45 | | -3x+5x+1=x+7 | | -20-18d=2(-10d+20)-20 | | g–1+1=–2 | | Y=-6-y | | 4−5 | | 36+(3x-34)+(4x-18)=180 | | -f=-8-2f | | 36+(3x-34)+(4x+18)=180 | | 12-4y=-6 | | 3/4x+5=1/4x-6 |

Equations solver categories