0.15x=3/20x

Simple and best practice solution for 0.15x=3/20x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.15x=3/20x equation:



0.15x=3/20x
We move all terms to the left:
0.15x-(3/20x)=0
Domain of the equation: 20x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.15x-(+3/20x)=0
We get rid of parentheses
0.15x-3/20x=0
We multiply all the terms by the denominator
(0.15x)*20x-3=0
We add all the numbers together, and all the variables
(+0.15x)*20x-3=0
We multiply parentheses
0x^2-3=0
We add all the numbers together, and all the variables
x^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| -23y+43=0 | | 5^7x-3=70 | | -5(y+2)=30 | | x+0,5x=5950 | | 2^(1.08)*n=2.5 | | 2.1(x+3)=4x+1.73 | | 3c+4=15 | | -9=h+9 | | 26+x+47=90 | | 10=-7-r | | -4(2-1.2x)=49 | | 4.46x10^9=x | | Y=6+2.50x | | 100x^2-67x+105=0 | | -7x=-(x+7) | | x/1.2=5/6 | | 7x-3x-9=3 | | b=-1+-18 | | 3(x+5)=5.1 | | 2(a+2)=20.4 | | 3x+9=×12 | | 1.2=6c-6 | | 6=9x-30 | | 8e-7=39.4 | | 2(3g+1)=-7 | | 4x+3x+6=20 | | 4y–12=30–y | | 50°=(6v-4) | | 9m+6)^2=28 | | 3x-28=59 | | 26=8c-6 | | 6j-11j-11j+19=13 |

Equations solver categories