0.05y+0.03y(y+50)=17.5

Simple and best practice solution for 0.05y+0.03y(y+50)=17.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.05y+0.03y(y+50)=17.5 equation:


Simplifying
0.05y + 0.03y(y + 50) = 17.5

Reorder the terms:
0.05y + 0.03y(50 + y) = 17.5
0.05y + (50 * 0.03y + y * 0.03y) = 17.5
0.05y + (1.5y + 0.03y2) = 17.5

Combine like terms: 0.05y + 1.5y = 1.55y
1.55y + 0.03y2 = 17.5

Solving
1.55y + 0.03y2 = 17.5

Solving for variable 'y'.

Reorder the terms:
-17.5 + 1.55y + 0.03y2 = 17.5 + -17.5

Combine like terms: 17.5 + -17.5 = 0.0
-17.5 + 1.55y + 0.03y2 = 0.0

Begin completing the square.  Divide all terms by
0.03 the coefficient of the squared term: 

Divide each side by '0.03'.
-583.3333333 + 51.66666667y + y2 = 0

Move the constant term to the right:

Add '583.3333333' to each side of the equation.
-583.3333333 + 51.66666667y + 583.3333333 + y2 = 0 + 583.3333333

Reorder the terms:
-583.3333333 + 583.3333333 + 51.66666667y + y2 = 0 + 583.3333333

Combine like terms: -583.3333333 + 583.3333333 = 0.0000000
0.0000000 + 51.66666667y + y2 = 0 + 583.3333333
51.66666667y + y2 = 0 + 583.3333333

Combine like terms: 0 + 583.3333333 = 583.3333333
51.66666667y + y2 = 583.3333333

The y term is 51.66666667y.  Take half its coefficient (25.83333334).
Square it (667.3611115) and add it to both sides.

Add '667.3611115' to each side of the equation.
51.66666667y + 667.3611115 + y2 = 583.3333333 + 667.3611115

Reorder the terms:
667.3611115 + 51.66666667y + y2 = 583.3333333 + 667.3611115

Combine like terms: 583.3333333 + 667.3611115 = 1250.6944448
667.3611115 + 51.66666667y + y2 = 1250.6944448

Factor a perfect square on the left side:
(y + 25.83333334)(y + 25.83333334) = 1250.6944448

Calculate the square root of the right side: 35.365158628

Break this problem into two subproblems by setting 
(y + 25.83333334) equal to 35.365158628 and -35.365158628.

Subproblem 1

y + 25.83333334 = 35.365158628 Simplifying y + 25.83333334 = 35.365158628 Reorder the terms: 25.83333334 + y = 35.365158628 Solving 25.83333334 + y = 35.365158628 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-25.83333334' to each side of the equation. 25.83333334 + -25.83333334 + y = 35.365158628 + -25.83333334 Combine like terms: 25.83333334 + -25.83333334 = 0.00000000 0.00000000 + y = 35.365158628 + -25.83333334 y = 35.365158628 + -25.83333334 Combine like terms: 35.365158628 + -25.83333334 = 9.531825288 y = 9.531825288 Simplifying y = 9.531825288

Subproblem 2

y + 25.83333334 = -35.365158628 Simplifying y + 25.83333334 = -35.365158628 Reorder the terms: 25.83333334 + y = -35.365158628 Solving 25.83333334 + y = -35.365158628 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-25.83333334' to each side of the equation. 25.83333334 + -25.83333334 + y = -35.365158628 + -25.83333334 Combine like terms: 25.83333334 + -25.83333334 = 0.00000000 0.00000000 + y = -35.365158628 + -25.83333334 y = -35.365158628 + -25.83333334 Combine like terms: -35.365158628 + -25.83333334 = -61.198491968 y = -61.198491968 Simplifying y = -61.198491968

Solution

The solution to the problem is based on the solutions from the subproblems. y = {9.531825288, -61.198491968}

See similar equations:

| 4+u^5v^3-16v^4w^5u^2-6w= | | s/4-5=1 | | x^2=12x | | w/2-16=5 | | -(-8x)=(-63) | | y=3x+16 | | 12[4+(-9)]= | | r/3-4=2 | | 17n-5=0 | | 0.05r+0.4r=27 | | 3n^2+14n-5=o | | X+1.7x=4.2 | | 3n+14n-5=0 | | vu+2u-7v-14= | | (10x-9)=8 | | 2.4c-3.5+4.7=-10.8 | | kx^2-4x+k=0 | | 6n^3+4w= | | B+4-2X=A+6X-16 | | 8(x-4)-1=6x+1 | | 0.95x^2-15x+20=0 | | 0.1a-0.3=0.2a-8.3 | | 6y^2+4= | | -6.04-2.9c=2.6(c+3.6) | | -5-y-1=9 | | 7a-14=15(a-6) | | (x)ln(3)=(2)-(x)ln(2) | | 4=m+11 | | 6x-3=9y | | 3.7x+42=-5.2x+9 | | x^4+7x^2-6=0 | | x^4+7x^2-6x=0 |

Equations solver categories