0,4x+3/7x+6=x

Simple and best practice solution for 0,4x+3/7x+6=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0,4x+3/7x+6=x equation:



0.4x+3/7x+6=x
We move all terms to the left:
0.4x+3/7x+6-(x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We add all the numbers together, and all the variables
-0.6x+3/7x+6=0
We multiply all the terms by the denominator
-(0.6x)*7x+6*7x+3=0
We add all the numbers together, and all the variables
-(+0.6x)*7x+6*7x+3=0
We multiply parentheses
-0x^2+6*7x+3=0
Wy multiply elements
-0x^2+42x+3=0
We add all the numbers together, and all the variables
-1x^2+42x+3=0
a = -1; b = 42; c = +3;
Δ = b2-4ac
Δ = 422-4·(-1)·3
Δ = 1776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1776}=\sqrt{16*111}=\sqrt{16}*\sqrt{111}=4\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-4\sqrt{111}}{2*-1}=\frac{-42-4\sqrt{111}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+4\sqrt{111}}{2*-1}=\frac{-42+4\sqrt{111}}{-2} $

See similar equations:

| 23+18v=-21=14v | | 1/7x^2+1=4/7x | | 9+10j=9j | | 2x=396 | | 4(2x+2)=5x+6 | | 4x+12/4=27 | | 11y=24+3y | | 9x-7=42+2x | | 10-4x=-50+x | | 2x-220=105+15x | | 3x+1500=35 | | 4v=7v+21 | | 2(5x+50+2(3x-2)=54 | | -10x+1=-80-x | | (b-10)=(b=+10) | | 6x-10=68-10x | | 8−u=4 | | 15y=84+8y | | 21/3x=31 | | 2(3v=8)=40 | | 1.3/4=x/1.3 | | -32-x=2-3x | | 2x-4x=3x-12 | | 2(8a+6)2(9a+10)=304 | | 0.3x-0.24=0.36+0.52 | | 6x+3x-4x=2+4 | | 125b^2+100B+20=0 | | -3x+4=-6 | | u−2=1 | | 4(y+2)=10 | | (-4x+8)(-4)=72 | | 8x-4=60° |

Equations solver categories