If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.4(x+5)-3=2/5x-1
We move all terms to the left:
0.4(x+5)-3-(2/5x-1)=0
Domain of the equation: 5x-1)!=0We multiply parentheses
x∈R
0.4x-(2/5x-1)+2-3=0
We get rid of parentheses
0.4x-2/5x+1+2-3=0
We multiply all the terms by the denominator
(0.4x)*5x+1*5x+2*5x-3*5x-2=0
We add all the numbers together, and all the variables
(+0.4x)*5x+1*5x+2*5x-3*5x-2=0
We multiply parentheses
0x^2+1*5x+2*5x-3*5x-2=0
Wy multiply elements
0x^2+5x+10x-15x-2=0
We add all the numbers together, and all the variables
x^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| (1/16)^2x=32 | | 2^2x-5^2x=4 | | 120/0.4=300/x | | 60/5x=24 | | 10x+50=71 | | 24+2x+18=3x+6=24 | | 3x–11=-41 | | 3x^2÷7=28 | | p-5/7=7 | | e4+X*8=60 | | 180+0.25x=315 | | 50m+680=130 | | -10=9+x | | 3549=5n | | 7x+2=67 | | x+7/3=(3x-2/5) | | 25x8=X | | x+10x-30=-8 | | x+5=3x+13÷2 | | 5z=3z | | V=(32-2x)(24-2x)x | | W(4)=200x | | W(x)=200x | | d^2+6d^2+11d+6=0 | | 2x-5(x-4)=-3+5x-41 | | 15000x+x=3x | | X+(1.5x)=1000 | | x–255=671 | | 5x(x-5)(2x-35)=360 | | 7x^-2x-4=0 | | -3x+33x+32x=180• | | x-55=67 |