If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.05x^2+x-199920=0
a = 0.05; b = 1; c = -199920;
Δ = b2-4ac
Δ = 12-4·0.05·(-199920)
Δ = 39985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{39985}}{2*0.05}=\frac{-1-\sqrt{39985}}{0.1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{39985}}{2*0.05}=\frac{-1+\sqrt{39985}}{0.1} $
| (x+2)^2=-1 | | x/3+4=x/4+8 | | 4^9x-11=234 | | (5z-4)=(3z+5) | | 3x+7/2=7 | | p+2p-3p=6 | | A(x)=B(x)=3x-12x+12=0 | | 3/4x-2x1/4(2x-4)=17 | | 900-25x=400 | | 3/4x-2x1/4(2x-4=17 | | 9m+6=72 | | 6y-13=31 | | 2/9x=0 | | 2=b/9+6 | | 2.569x=−12.48534 | | 2x+20=4x+14 | | (1-x)*2.71=4.5 | | 3/4(5m+15)=12 | | 25^x-(3*5^x)+2=0 | | 14-33=x² | | x+14-33=x² | | (3+x)*(20+x)=168 | | 15x+-6=1/4 | | 4x+x=-1,5 | | 7j−6j=17 | | 1,2y-4,7=-3,5 | | 4q−q=6 | | -1,2y-4,7=-35 | | 5x-22=5x+4 | | 8b-9b=5 | | 0,2x+3=-15 | | 100-5x=17 |