.75y-5=-1+1/4y

Simple and best practice solution for .75y-5=-1+1/4y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .75y-5=-1+1/4y equation:



.75y-5=-1+1/4y
We move all terms to the left:
.75y-5-(-1+1/4y)=0
Domain of the equation: 4y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
.75y-(1/4y-1)-5=0
We get rid of parentheses
.75y-1/4y+1-5=0
We multiply all the terms by the denominator
(.75y)*4y+1*4y-5*4y-1=0
We add all the numbers together, and all the variables
(+.75y)*4y+1*4y-5*4y-1=0
We multiply parentheses
4y^2+1*4y-5*4y-1=0
Wy multiply elements
4y^2+4y-20y-1=0
We add all the numbers together, and all the variables
4y^2-16y-1=0
a = 4; b = -16; c = -1;
Δ = b2-4ac
Δ = -162-4·4·(-1)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{17}}{2*4}=\frac{16-4\sqrt{17}}{8} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{17}}{2*4}=\frac{16+4\sqrt{17}}{8} $

See similar equations:

| 12=15(n-1/5) | | 20p+40=2p+58 | | m+100=33 | | 9y+13=9(y+3)-20 | | -9+18y=-9-2y | | -2(n-12)+1=2n+25 | | 118=22x+8 | | b-294=389 | | 5x+1=2x−14 | | 4y+4/y=6 | | x²+13=49 | | 4x=21=x-18 | | 0.3=0.5z-0.7 | | (4x+20)=(5x+18) | | t-958=-48 | | 14=8y-6y | | a=3a-60 | | 3/7w-11=-4/7w= | | X(1+2+3)=3(x+6) | | −4(n+5)=−32 | | -9g=594 | | 3w-2=6+4 | | 1.8+7n=9.5-4n= | | 7x-12=5x+20 | | 2(9-x)=3(x=16) | | 180=5x-70 | | 2c-84+c+33=180 | | x+90=8.13 | | 8m^2+2m=12 | | 0.06+0.14(3000-y)=0.42y | | 3+3p=10 | | 16y+10=138 |

Equations solver categories