.5x-.3x(40+x)=.4(40)

Simple and best practice solution for .5x-.3x(40+x)=.4(40) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5x-.3x(40+x)=.4(40) equation:


Simplifying
0.5x + -0.3x(40 + x) = 0.4(40)
0.5x + (40 * -0.3x + x * -0.3x) = 0.4(40)
0.5x + (-12x + -0.3x2) = 0.4(40)

Combine like terms: 0.5x + -12x = -11.5x
-11.5x + -0.3x2 = 0.4(40)

Multiply 0.4 * 40
-11.5x + -0.3x2 = 16

Solving
-11.5x + -0.3x2 = 16

Solving for variable 'x'.

Reorder the terms:
-16 + -11.5x + -0.3x2 = 16 + -16

Combine like terms: 16 + -16 = 0
-16 + -11.5x + -0.3x2 = 0

Begin completing the square.  Divide all terms by
-0.3 the coefficient of the squared term: 

Divide each side by '-0.3'.
53.33333333 + 38.33333333x + x2 = 0

Move the constant term to the right:

Add '-53.33333333' to each side of the equation.
53.33333333 + 38.33333333x + -53.33333333 + x2 = 0 + -53.33333333

Reorder the terms:
53.33333333 + -53.33333333 + 38.33333333x + x2 = 0 + -53.33333333

Combine like terms: 53.33333333 + -53.33333333 = 0.00000000
0.00000000 + 38.33333333x + x2 = 0 + -53.33333333
38.33333333x + x2 = 0 + -53.33333333

Combine like terms: 0 + -53.33333333 = -53.33333333
38.33333333x + x2 = -53.33333333

The x term is 38.33333333x.  Take half its coefficient (19.16666667).
Square it (367.3611112) and add it to both sides.

Add '367.3611112' to each side of the equation.
38.33333333x + 367.3611112 + x2 = -53.33333333 + 367.3611112

Reorder the terms:
367.3611112 + 38.33333333x + x2 = -53.33333333 + 367.3611112

Combine like terms: -53.33333333 + 367.3611112 = 314.02777787
367.3611112 + 38.33333333x + x2 = 314.02777787

Factor a perfect square on the left side:
(x + 19.16666667)(x + 19.16666667) = 314.02777787

Calculate the square root of the right side: 17.720828927

Break this problem into two subproblems by setting 
(x + 19.16666667) equal to 17.720828927 and -17.720828927.

Subproblem 1

x + 19.16666667 = 17.720828927 Simplifying x + 19.16666667 = 17.720828927 Reorder the terms: 19.16666667 + x = 17.720828927 Solving 19.16666667 + x = 17.720828927 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-19.16666667' to each side of the equation. 19.16666667 + -19.16666667 + x = 17.720828927 + -19.16666667 Combine like terms: 19.16666667 + -19.16666667 = 0.00000000 0.00000000 + x = 17.720828927 + -19.16666667 x = 17.720828927 + -19.16666667 Combine like terms: 17.720828927 + -19.16666667 = -1.445837743 x = -1.445837743 Simplifying x = -1.445837743

Subproblem 2

x + 19.16666667 = -17.720828927 Simplifying x + 19.16666667 = -17.720828927 Reorder the terms: 19.16666667 + x = -17.720828927 Solving 19.16666667 + x = -17.720828927 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-19.16666667' to each side of the equation. 19.16666667 + -19.16666667 + x = -17.720828927 + -19.16666667 Combine like terms: 19.16666667 + -19.16666667 = 0.00000000 0.00000000 + x = -17.720828927 + -19.16666667 x = -17.720828927 + -19.16666667 Combine like terms: -17.720828927 + -19.16666667 = -36.887495597 x = -36.887495597 Simplifying x = -36.887495597

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.445837743, -36.887495597}

See similar equations:

| 4(x-6)=36 | | cos(55)=x/16 | | 21x+8-26x=1-8 | | 3b=-54 | | 0.06(y-1)+0.10y+0.20y-0.3= | | 36=4v+8 | | (35/n)4 | | 2(5-3s)+9s=36 | | 5n+5-2n=4n-1 | | 9(x+9)-2(x-7)= | | 7b+3=2b-8 | | 2xsquare+5x-6=0 | | -3r=n/9 | | y=(-15x)+900 | | tan^2x-2tanx=0 | | y=(-15X)-900 | | N^2-11=-30 | | 5-3L= | | (3w/5)(w/3)=7 | | 8-24=m-3+13 | | 2.50=5n | | (3w/5)(w/3) | | N^2-11=-3 | | 2w+4=-10 | | x=2.9-2.9x | | Y=3.2(4.3)x | | 3(6-11)=y-8 | | 6n-6=-3n+30 | | 5x+16-4x=-8-12 | | (-3xy^2-2y)dx+(-3x^2y-2x)dy=0 | | 2=c-14 | | [((35)/(n))4]-6.2=7.8 |

Equations solver categories