.5w+3=2/3w-5

Simple and best practice solution for .5w+3=2/3w-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5w+3=2/3w-5 equation:



.5w+3=2/3w-5
We move all terms to the left:
.5w+3-(2/3w-5)=0
Domain of the equation: 3w-5)!=0
w∈R
We get rid of parentheses
.5w-2/3w+5+3=0
We multiply all the terms by the denominator
(.5w)*3w+5*3w+3*3w-2=0
We add all the numbers together, and all the variables
(+.5w)*3w+5*3w+3*3w-2=0
We multiply parentheses
3w^2+5*3w+3*3w-2=0
Wy multiply elements
3w^2+15w+9w-2=0
We add all the numbers together, and all the variables
3w^2+24w-2=0
a = 3; b = 24; c = -2;
Δ = b2-4ac
Δ = 242-4·3·(-2)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-10\sqrt{6}}{2*3}=\frac{-24-10\sqrt{6}}{6} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+10\sqrt{6}}{2*3}=\frac{-24+10\sqrt{6}}{6} $

See similar equations:

| -1.5x=9+.5x | | 2x-8+8=3x-6 | | 5=n/3+8 | | -5/2x=9+1/2 | | 7x+8(x+1/4)=3(6x-9)8 | | 5(x+2)=(x+14) | | -16/5(x-18/5)=9+x | | x/8=x/7-1 | | 3x+5=7x+6 | | 5/2x=9+1/2x | | (7x-40)^2=16 | | -1/2x+11/2=1/2(3-x)) | | −24−18p=3/8p | | .1x+6=8+.15x | | −24−1/8=3/8p | | 2x-4+5=x+9 | | 1/3x-2/5=1100 | | x/9+2x=1/3 | | 11n+8-7n=98 | | (5x+4)+(3x+8)=100 | | 18x-5+x=-59 | | 59=-1+5x | | 3/2(2x+2)=8 | | -8x-2x-10=90 | | 7x+10x=3x | | 3m-3=5m+3-2m | | 3x-2+x+25=180 | | 2x+27=23 | | 4x/9-2x/3=10 | | 5y+2=2y-9 | | -9-x=7x-41 | | 0.40x+90=0.60x+30 |

Equations solver categories