.05x+3=2/3x+1

Simple and best practice solution for .05x+3=2/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .05x+3=2/3x+1 equation:



.05x+3=2/3x+1
We move all terms to the left:
.05x+3-(2/3x+1)=0
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
.05x-2/3x-1+3=0
We multiply all the terms by the denominator
(.05x)*3x-1*3x+3*3x-2=0
We add all the numbers together, and all the variables
(+.05x)*3x-1*3x+3*3x-2=0
We multiply parentheses
3x^2-1*3x+3*3x-2=0
Wy multiply elements
3x^2-3x+9x-2=0
We add all the numbers together, and all the variables
3x^2+6x-2=0
a = 3; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·3·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*3}=\frac{-6-2\sqrt{15}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*3}=\frac{-6+2\sqrt{15}}{6} $

See similar equations:

| -x+9-7x-25=-10x+25+3x-48 | | 19s+4s-18s+2=17 | | 2+1+1x7=A | | 2j+j+2=20 | | 10t+3t-4t-2=7 | | -2(x-4)^2=-72 | | h-1.4=19 | | 9b-8b=4 | | 16w-6w-9w=20 | | 36k=-8 | | -6=-36+6s | | 180-x=224 | | 5v+5=10+3v+v | | 14a+2a-11a-a=12 | | 3(+2m)=4(3m+12) | | 5(2b+3)-2(b+4)=3(2b+1)@-2 | | 2/q=3 | | 10x+11x+12x=64350 | | 5(2b+3)-2(b+4)=3(2b+1) | | -4(w+)1=-24 | | (x-2)^2-11=25 | | 4x-2x=150 | | 14a+2a-11a-11a-a=12 | | 2+8x+59+2x=30-x-2+10x | | 4$-2x=150 | | 7y+4y-7y=8 | | 7x-2x=250 | | 9d=103-5•8 | | 7x+2x+9=27 | | n-24=-8(-7-2n)+n | | 12–g=10 | | n=8-2(-3) |

Equations solver categories