If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-y2=20y+10
We move all terms to the left:
-y2-(20y+10)=0
We add all the numbers together, and all the variables
-1y^2-(20y+10)=0
We get rid of parentheses
-1y^2-20y-10=0
a = -1; b = -20; c = -10;
Δ = b2-4ac
Δ = -202-4·(-1)·(-10)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-6\sqrt{10}}{2*-1}=\frac{20-6\sqrt{10}}{-2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+6\sqrt{10}}{2*-1}=\frac{20+6\sqrt{10}}{-2} $
| 9=r+0.1 | | 7x+63=4x-56 | | x+-11=18 | | 9/y+8=1 | | n-6.4=-3.3 | | 10x+16(1/2x)=720 | | -x-4-4x-6=-x-11/2 | | 97-x=115 | | 231=159-v | | 7(x+9)=4(x−8) | | 32000=2000^x=15 | | d-5.6=9.3 | | z(Z-1)=3 | | S+(s-4)=50 | | 2(x-6)-5(3x+4)=x-32 | | x-(-16)=5 | | 1 = 14q | | 96-y=164 | | 35,000-4x=0 | | -9-x=-28 | | 14=22b | | 2 = 32z | | -(4-m)=-(4m+4) | | 17=w-15 | | 5(x-1)/4=2(x+1)/2 | | 10x-2=7+3x | | x+-9=-8 | | 1511 =w−158 | | 9c+3=8c+20 | | 0.16x=x | | 61-w=222 | | x+-4=4 |