If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x2+6x+10=0
We add all the numbers together, and all the variables
-1x^2+6x+10=0
a = -1; b = 6; c = +10;
Δ = b2-4ac
Δ = 62-4·(-1)·10
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{19}}{2*-1}=\frac{-6-2\sqrt{19}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{19}}{2*-1}=\frac{-6+2\sqrt{19}}{-2} $
| -4(2.5x+8.7)=1.4-9.2x(6) | | v-5/2=-5 | | 7/15a=140 | | 3(w+4)=15 | | 4t+2+2t-5t=2+3 | | 5/4=30/c | | 2/3(9+x)=-12 | | 1+4q=≤9 | | -4.2x/4.2=21/4.2 | | 1-(x-1)+4x=16 | | 1/3x-8=2/3 | | .6(x+25)=-30 | | h/4+6=10 | | 7x-2+3x=8 | | 14r-5+16r=-5 | | 140/1a=7/15 | | x.3/8=15/32 | | 8(j-3=4j+9j-14 | | T+10=7x-14 | | 40+0.05m=35+0.10m | | 18=-18+9x | | 4x-3+3x+11+39=180 | | 5.94+x=-12 | | 140a=7/15 | | 13+s/2=18 | | 16=v-5v | | (X+5)(2x-5)=3(x+5) | | -7+4(1-2f)=29 | | 6x+8x=10x | | 0.66(9+x)=-12 | | 3n-73=4n-16 | | -5-x=3x+5 |