If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x2+5x+32=0
We add all the numbers together, and all the variables
-1x^2+5x+32=0
a = -1; b = 5; c = +32;
Δ = b2-4ac
Δ = 52-4·(-1)·32
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{17}}{2*-1}=\frac{-5-3\sqrt{17}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{17}}{2*-1}=\frac{-5+3\sqrt{17}}{-2} $
| -x4+5x2+36=0 | | 278+50m=850 | | 5n+4=N-2 | | 8n÷-2=10 | | 27-n=5 | | -4n+7=35 | | 500+120x=755 | | √3^2*14x=0 | | 3*4x-3 +5*7x-3 =22x-4 | | x+x*0,1=60 | | -3x2+24x+60=0 | | 20y-15=4y-43 | | 4n=3.6-5n | | 3x²–x=2 | | 3x²-x=2 | | 7-5x^2+2x=0 | | a2+3a=4 | | (10x-3)(5x+1)=0 | | 4x-12-2x+8=6 | | 2(9x+8)/42=3/4(2x+8) | | 7b+2=4b+11 | | 2^1*2^3=2^n | | 7b+3=8b+1 | | 3x^2+7x-440=0 | | 1-x+3/x-2=13-4x/2-x | | 3b+1=1b+7 | | 40+x+40+3x-17=180 | | 2(-1)=6x-2 | | 4y-2y(y-8)=13 | | 0×x=-2 | | w^2+20w-2400=0 | | 9x/4x=78 |