-sin(pi/4*x)*(pi/4)

Simple and best practice solution for -sin(pi/4*x)*(pi/4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -sin(pi/4*x)*(pi/4) equation:


x in (-oo:+oo)

(pi/4)*(-sin((pi/4)*x)) = 0

pi/4 = 0

pi/4 = 0

x belongs to the empty set

-sin((pi/4)*x) = 0

-sin((pi/4)*x) = 0 <=> (pi/4)*x = pi*k_1 i k_1 należy do I

t_1 = pi*k_1

(pi/4)*x-t_1 = 0

(pi/4)*x-t_1 = 0 // + t_1

(pi/4)*x = t_1 // : pi/4

x = t_1/(pi/4)

x = pi*k_1/(pi/4) i k_1 należy do I

(pi/4)*(-sin((pi/4)*x)) = 0 <=> pi/4 = 0 or (pi/4)*(-sin((pi/4)*x)) = 0 <=> -sin((pi/4)*x) = 0

x = pi*k_1/(pi/4)

See similar equations:

| -sin(pi/4*x)*pi/4 | | -4(6x-4)+7=-24x+23 | | (55h^9p^10)/(-5hp^10) | | 1.2x+x=50 | | 0.16(y-9)+0.06y=0.02y-2.8 | | 8(p-1)=6(m-1) | | -5(x+8)+2=-38 | | 2w+2x(3w)= | | 2(x-5)=6x | | y=(7x^3-8x^2) | | y=(7x^3+-8x^2) | | y=(7x^3+-8x^2)2 | | 18x-6-4=3x+1 | | t^3-2t^2-8t+8=0 | | ln(x+1)+ln(x+2)=ln(x+3) | | y=(7x^3-8x^2)2 | | y=(7x)2 | | 10x+5=q | | =(-2x(y^2))(-4xy) | | 2x-4+6x=2(6x-5)+4 | | lg(x/x0)=a | | -4(x)+16=-116 | | X*12-163=x*4-11 | | 7n+4=-7 | | 4x-6+3x+(x+2)=180 | | 7n+4=7 | | 4x+13=7-2x | | x(0.06)+x=211448.60 | | 2x*5*x-3=2x*x | | 6-5x=7+3x | | 4x-6+3x+x+2=180 | | -9v^3+24v^2-7v=0 |

Equations solver categories