-s(s+4)=6(s-10)

Simple and best practice solution for -s(s+4)=6(s-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -s(s+4)=6(s-10) equation:



-s(s+4)=6(s-10)
We move all terms to the left:
-s(s+4)-(6(s-10))=0
We multiply parentheses
-s^2-4s-(6(s-10))=0
We calculate terms in parentheses: -(6(s-10)), so:
6(s-10)
We multiply parentheses
6s-60
Back to the equation:
-(6s-60)
We add all the numbers together, and all the variables
-1s^2-4s-(6s-60)=0
We get rid of parentheses
-1s^2-4s-6s+60=0
We add all the numbers together, and all the variables
-1s^2-10s+60=0
a = -1; b = -10; c = +60;
Δ = b2-4ac
Δ = -102-4·(-1)·60
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{85}}{2*-1}=\frac{10-2\sqrt{85}}{-2} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{85}}{2*-1}=\frac{10+2\sqrt{85}}{-2} $

See similar equations:

| d/4-3=17 | | (-x)/4=1 | | -1(2-2x)+4=3x+14 | | (z+13)/3=-6 | | 3b-8=1+2b | | 5⋅72y=175 | | -12=w/4+4 | | 2x2-3x=24 | | y−4=10. | | 216x=232 | | 15=-3+3u | | 7/2x=18 | | -8n+10=-62 | | -1•(2-2x)+4x=3x+14 | | 142,500+.02x=x | | 5x+6x-5=180 | | -5+6z=-1 | | x+2=10. | | 2-6x=224 | | -42=-6/7x | | x=1E=8(5-3) | | 113+34+x=180 | | 3x–12=28+x | | (w-6)/2=33 | | 32x-10=38 | | 200=-10x | | (3x+3)+(4x-8)=180 | | 11/4=x/6.7 | | 3(2x+7)=6(x+)-3 | | (a+2)(a+1)=0 | | -3m+9=6m-18 | | x=3D=5x²-10 |

Equations solver categories