If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-k(k+9)=9(k-5)-14
We move all terms to the left:
-k(k+9)-(9(k-5)-14)=0
We multiply parentheses
-k^2-9k-(9(k-5)-14)=0
We calculate terms in parentheses: -(9(k-5)-14), so:We add all the numbers together, and all the variables
9(k-5)-14
We multiply parentheses
9k-45-14
We add all the numbers together, and all the variables
9k-59
Back to the equation:
-(9k-59)
-1k^2-9k-(9k-59)=0
We get rid of parentheses
-1k^2-9k-9k+59=0
We add all the numbers together, and all the variables
-1k^2-18k+59=0
a = -1; b = -18; c = +59;
Δ = b2-4ac
Δ = -182-4·(-1)·59
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{35}}{2*-1}=\frac{18-4\sqrt{35}}{-2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{35}}{2*-1}=\frac{18+4\sqrt{35}}{-2} $
| 9m-39=60 | | -8-3.8=3x-5.8 | | 39.95+2.95x=26.00+4.50 | | 15–3x=27 | | 3+.60k=19.20 | | 110=22y | | X8-7(4+5)=8+5x+13 | | 0=8t^2-128+542 | | 2(4p+32)=144 | | 2/5+t=4/5 | | 3n+16+5n+12=190 | | 80+2x^2+3x=180 | | 42-8×3-y=80 | | -66=6(x-+ | | 5x+(2x+12)=180 | | x4-10x2-1=0 | | 6(g-1)=2(1+g) | | Xx100=99 | | 7(g+20)=3(9g-20) | | 4x-8/7=x+1 | | 5-p=-1 | | -1.2b+14.75=-3.7b | | 6(3d+9)=162 | | 4(x-3)=3(2x+5 | | 8(6j-3)=6(4j+4) | | 16=8r-4r+4+24 | | g+4=2g+1 | | y+12=4y+3 | | 18=-6x+4(2x=3) | | 3(5u+8)=4(5u+1) | | 3a/4-2a/3=11/6+a | | 6s-31=59 |