-j2=-62

Simple and best practice solution for -j2=-62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -j2=-62 equation:



-j2=-62
We move all terms to the left:
-j2-(-62)=0
We add all the numbers together, and all the variables
-1j^2+62=0
a = -1; b = 0; c = +62;
Δ = b2-4ac
Δ = 02-4·(-1)·62
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*-1}=\frac{0-2\sqrt{62}}{-2} =-\frac{2\sqrt{62}}{-2} =-\frac{\sqrt{62}}{-1} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*-1}=\frac{0+2\sqrt{62}}{-2} =\frac{2\sqrt{62}}{-2} =\frac{\sqrt{62}}{-1} $

See similar equations:

| 3(9+2d)=4d | | 3x-19=2x+32 | | 32=2(2w)+2w | | 12m=720 | | 75−3.5y−4y=4y+6 | | 3x-9=-2x+3 | | -3x+5-2x=-6x-4+x+-1 | | 8n+1=5n-8 | | 22x-24=20x-26 | | 7(x−5)=−91 | | p=5,R1,T=-2 | | 19=2-n | | -3x+5-2x=-6x-4+x+5 | | 39=5(k+3)-8k | | 26x=27 | | 10x=73 | | 1/9x=193 | | 3(v-8)=6 | | -3x+5-2x=-6x-4+x+9 | | 5n+25=2n+40 | | 3.4=6.6-2w | | -56=c(-140 | | 49=3(x–5)+5x | | -3x+5-2x=-6x-4+x+0 | | M+7/m=48/m-7 | | 2x—6=8 | | -56=c-14 | | 4=t/2+3 | | 2(2x+1)+2x=62 | | 2=k+4/11 | | –65=k−73 | | r/2-5.75=-3.75 |

Equations solver categories