-9m+10m(m+3)=-7(m-10)

Simple and best practice solution for -9m+10m(m+3)=-7(m-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9m+10m(m+3)=-7(m-10) equation:



-9m+10m(m+3)=-7(m-10)
We move all terms to the left:
-9m+10m(m+3)-(-7(m-10))=0
We multiply parentheses
10m^2-9m+30m-(-7(m-10))=0
We calculate terms in parentheses: -(-7(m-10)), so:
-7(m-10)
We multiply parentheses
-7m+70
Back to the equation:
-(-7m+70)
We add all the numbers together, and all the variables
10m^2+21m-(-7m+70)=0
We get rid of parentheses
10m^2+21m+7m-70=0
We add all the numbers together, and all the variables
10m^2+28m-70=0
a = 10; b = 28; c = -70;
Δ = b2-4ac
Δ = 282-4·10·(-70)
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-16\sqrt{14}}{2*10}=\frac{-28-16\sqrt{14}}{20} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+16\sqrt{14}}{2*10}=\frac{-28+16\sqrt{14}}{20} $

See similar equations:

| 5/2x+1/2=11/2 | | 7x-10-5x=12 | | 34=−2+9x+16+x | | X=3+1/e^2 | | 1/4+3c=9 | | 3x+-8=5x+2 | | 2/3x-2(3+x)=-x-5 | | 1/22h=17 | | 10a^2+a=2 | | 1/4x-11=2 | | -11.4=w/7+6.1 | | 48=4(n+4)+4n | | -8x-31=-15 | | 5x+33+14x+3=5x+2 | | 175m+100m+52,057=55,275-200m | | 7-5x=10x-2 | | 2v-2-3v=-12 | | -6=8n-7n | | 8-5x=x+2(1-2x) | | 2(2x-3)-3=5x-2 | | 35+(5x+5)+(4x+5)=180 | | 2x+20=3(3x+4)-6 | | 8-5x=x+2(1-2x | | x-8=3(x-4)-6 | | (2x-4)+60+60=180 | | 3.9g+6=1.9g+14 | | 2(5x+2)=-6 | | X+2/2=x-5 | | 3x-3/3=5 | | 58=16+n | | -56=-4(4p+2) | | 2(2x-2)+4=-x-40 |

Equations solver categories