If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9/8k+6/7=-2-7/3k
We move all terms to the left:
-9/8k+6/7-(-2-7/3k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 3k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-9/8k-(-7/3k-2)+6/7=0
We get rid of parentheses
-9/8k+7/3k+2+6/7=0
We calculate fractions
432k^2/1176k^2+(-1323k)/1176k^2+2744k/1176k^2+2=0
We multiply all the terms by the denominator
432k^2+(-1323k)+2744k+2*1176k^2=0
We add all the numbers together, and all the variables
432k^2+2744k+(-1323k)+2*1176k^2=0
Wy multiply elements
432k^2+2352k^2+2744k+(-1323k)=0
We get rid of parentheses
432k^2+2352k^2+2744k-1323k=0
We add all the numbers together, and all the variables
2784k^2+1421k=0
a = 2784; b = 1421; c = 0;
Δ = b2-4ac
Δ = 14212-4·2784·0
Δ = 2019241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2019241}=1421$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1421)-1421}{2*2784}=\frac{-2842}{5568} =-49/96 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1421)+1421}{2*2784}=\frac{0}{5568} =0 $
| 8x−3=2x+39 | | 232+3x=360 | | -14=-20+n | | -1-3a2=-4 | | v/20=-19/20 | | 3b^2-11b+8=0 | | 10x-5+7x-16=5x+3 | | −3n=12 | | -2(14-2x)=-4(10-6x | | 5x+11=-55+6x | | -9(14-7x)=1017 | | 9(x+1)+3=-9(x-9)-5 | | y/2+7=-5 | | 6(3x+1)=5(2x+1) | | –8d+2d−4d+–6d+17d=–7 | | -2(8x-8)-3x=-5x-110 | | (k-1)/4=1/2 | | 10u+5u-8u+2u=18 | | -15=20+x/5 | | 5y-14=22 | | 8(x+2)+2=4x+4(4+x) | | v/5-17=9 | | w/5-17=9 | | X+1/9=x-4/8 | | 11=4q+3 | | 14n-14n+2n=2 | | 48=28-5(3-3w) | | 2p−15=5p+5 | | 11=s3+8 | | 3(9x+7)+1=-167 | | 11=s3+ 8 | | w+4w+5w-9w=19 |