-9(t+2)=4(t-15)t=

Simple and best practice solution for -9(t+2)=4(t-15)t= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9(t+2)=4(t-15)t= equation:



-9(t+2)=4(t-15)t=
We move all terms to the left:
-9(t+2)-(4(t-15)t)=0
We multiply parentheses
-9t-(4(t-15)t)-18=0
We calculate terms in parentheses: -(4(t-15)t), so:
4(t-15)t
We multiply parentheses
4t^2-60t
Back to the equation:
-(4t^2-60t)
We get rid of parentheses
-4t^2-9t+60t-18=0
We add all the numbers together, and all the variables
-4t^2+51t-18=0
a = -4; b = 51; c = -18;
Δ = b2-4ac
Δ = 512-4·(-4)·(-18)
Δ = 2313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2313}=\sqrt{9*257}=\sqrt{9}*\sqrt{257}=3\sqrt{257}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-3\sqrt{257}}{2*-4}=\frac{-51-3\sqrt{257}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+3\sqrt{257}}{2*-4}=\frac{-51+3\sqrt{257}}{-8} $

See similar equations:

| 9x-6x=8x2 | | 4u—-3=19 | | 14-c/8=3c/4-21 | | -3(6x-3)=81 | | x+(19x+60)=180 | | 7(w+7)=70 | | 21x+4=28 | | x+(19x+60)=190 | | 2b+3(2+b)=477 | | 14x=6x+15 | | 7+3r=r-1 | | 18x-7=7-11x | | (4x-24)/2=4 | | 3b+24=-16 | | 3w=27-6w | | 8=11-d | | 24r^2+40r=0 | | 11X-10y=48 | | -6(x-2)=6x-12-12x | | 5z-23=-3 | | 3/4q=-1/2 | | 3n+3=n-1 | | (25x-8)=180 | | 10-2/7=h | | 5x+6x-4=2x-8 | | c=22/7*5/2 | | 10-2/7=w | | -(3x+2)=-8 | | 4+r=2-r | | 17–19x=10 | | 10x^2+14x+10=6x^2 | | 4x(x+8)=3x(x+26) |

Equations solver categories