If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2+22=0
a = -8; b = 0; c = +22;
Δ = b2-4ac
Δ = 02-4·(-8)·22
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*-8}=\frac{0-8\sqrt{11}}{-16} =-\frac{8\sqrt{11}}{-16} =-\frac{\sqrt{11}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*-8}=\frac{0+8\sqrt{11}}{-16} =\frac{8\sqrt{11}}{-16} =\frac{\sqrt{11}}{-2} $
| 15x-2+46=180 | | n=32+6 | | -8x^2+22=0 | | (2x+5)(3x+5)=6 | | 15x-2=46 | | b-38=-25 | | 9x-4=3x+10 | | (2x^2-4x+1)=(5x+x^2-1) | | 5(7x-8)=30 | | 2s+7=3s-30 | | -3r(2-r)=15 | | 70=-7p+21 | | 21=1+7x | | 4w-26=82 | | -6=f/5 | | -4(-5y-4)=2(10y+8) | | 15p-14p=20 | | 2(n+3)+3(n+1)=42 | | 18-0.75x=12-0.25x | | x²+18=22 | | -1(3x-4)=5 | | 1(x+15)=4 | | 8x-2-5x=-23 | | -1/8x-37=24 | | 13=9-(p+2) | | 2x+4+112=180 | | 10x+15=55* | | 12+1=5x+3 | | 9x-(8x+9)=2x-17 | | 6x=331-7 | | -15x-14=-14-16-14x | | 4n+5n-12=9(n-2) |