-8x-14=7(-2-4x)4x

Simple and best practice solution for -8x-14=7(-2-4x)4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8x-14=7(-2-4x)4x equation:



-8x-14=7(-2-4x)4x
We move all terms to the left:
-8x-14-(7(-2-4x)4x)=0
We add all the numbers together, and all the variables
-8x-(7(-4x-2)4x)-14=0
We calculate terms in parentheses: -(7(-4x-2)4x), so:
7(-4x-2)4x
We multiply parentheses
-112x^2-56x
Back to the equation:
-(-112x^2-56x)
We get rid of parentheses
112x^2+56x-8x-14=0
We add all the numbers together, and all the variables
112x^2+48x-14=0
a = 112; b = 48; c = -14;
Δ = b2-4ac
Δ = 482-4·112·(-14)
Δ = 8576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8576}=\sqrt{64*134}=\sqrt{64}*\sqrt{134}=8\sqrt{134}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{134}}{2*112}=\frac{-48-8\sqrt{134}}{224} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{134}}{2*112}=\frac{-48+8\sqrt{134}}{224} $

See similar equations:

| |x+4|+5=2 | | 2x-1=-3x+5 | | -4t+6+10=-4+6t | | -4+26x=11 | | 11+a=-13 | | (3x+7)=70 | | m.4=0 | | 4r=9+17r | | x*1.3=192 | | x*0.3=192 | | 3+17-2m=18m | | 192=x+3x/10 | | x^2-3/x+x/x^2-3=2.5 | | -10u+14=5-19u | | x^2-3/x+x/x^2-3=2 | | x-3x-4=14 | | -9(m)-13=5 | | -13-9h=-10h | | 8+3(p-5)=17 | | 1/9p-1/2=1/81p-17/18 | | 14x-32=12 | | 3/x+3=5x/4+25/8 | | 8n-6n+7=3 | | X-9y=20y | | 5d+8=d | | 8(a-5)+26=2 | | 15=6-3(5-3x) | | X/3+2x/4=12 | | G(x)=3x^2+24x+45 | | 7+6f=-3+7f | | 22w-9=4w-24 | | 7x+3(x+6)=-62 |

Equations solver categories