-8b(3b-7)=-4-2(b+3)

Simple and best practice solution for -8b(3b-7)=-4-2(b+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8b(3b-7)=-4-2(b+3) equation:



-8b(3b-7)=-4-2(b+3)
We move all terms to the left:
-8b(3b-7)-(-4-2(b+3))=0
We multiply parentheses
-24b^2+56b-(-4-2(b+3))=0
We calculate terms in parentheses: -(-4-2(b+3)), so:
-4-2(b+3)
determiningTheFunctionDomain -2(b+3)-4
We multiply parentheses
-2b-6-4
We add all the numbers together, and all the variables
-2b-10
Back to the equation:
-(-2b-10)
We get rid of parentheses
-24b^2+56b+2b+10=0
We add all the numbers together, and all the variables
-24b^2+58b+10=0
a = -24; b = 58; c = +10;
Δ = b2-4ac
Δ = 582-4·(-24)·10
Δ = 4324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4324}=\sqrt{4*1081}=\sqrt{4}*\sqrt{1081}=2\sqrt{1081}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{1081}}{2*-24}=\frac{-58-2\sqrt{1081}}{-48} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{1081}}{2*-24}=\frac{-58+2\sqrt{1081}}{-48} $

See similar equations:

| s/3+33=41 | | -4(6+7b)=15 | | 9x+21=x | | 3(r+11)=45 | | 7n+5+6=33 | | 2=j/5+24 | | c-7/8=1 | | -2v-6=4(v-3) | | 0.75pX3=5.88 | | K=83k+7= | | 83=29^x | | w-1/4=14 | | 2y+3=y-1 | | 5x-10/3=-5 | | 7=t-37/7 | | 5(5x/6)=-67.5 | | n/24=7/8 | | w-1/4=21/2 | | 2+3x=12+1x | | 33-x=157 | | 90=5(y+10) | | -5(x-3)=-3(4x-2) | | -2x/3-5=-13 | | 2+3x=4+8+1x | | 3(x-4)-17=-32 | | 2j-49=35 | | -2w=112 | | -2(3-g)=30+4g | | 18n-8+3=29+n | | 5(5x+3)=90 | | 4(a-10)=76 | | 12=3(6-6r)-3(4r-8) |

Equations solver categories