-8/5k+6/7=3+7/3k

Simple and best practice solution for -8/5k+6/7=3+7/3k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8/5k+6/7=3+7/3k equation:



-8/5k+6/7=3+7/3k
We move all terms to the left:
-8/5k+6/7-(3+7/3k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 3k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-8/5k-(7/3k+3)+6/7=0
We get rid of parentheses
-8/5k-7/3k-3+6/7=0
We calculate fractions
270k^2/735k^2+(-1176k)/735k^2+(-1715k)/735k^2-3=0
We multiply all the terms by the denominator
270k^2+(-1176k)+(-1715k)-3*735k^2=0
Wy multiply elements
270k^2-2205k^2+(-1176k)+(-1715k)=0
We get rid of parentheses
270k^2-2205k^2-1176k-1715k=0
We add all the numbers together, and all the variables
-1935k^2-2891k=0
a = -1935; b = -2891; c = 0;
Δ = b2-4ac
Δ = -28912-4·(-1935)·0
Δ = 8357881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8357881}=2891$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2891)-2891}{2*-1935}=\frac{0}{-3870} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2891)+2891}{2*-1935}=\frac{5782}{-3870} =-1+956/1935 $

See similar equations:

| x^2+34x-25=0 | | 20-f=27 | | 8=r/2+6 | | 5b-8=8b-5 | | 15y+31=61. | | 0a=1-1 | | 4a+3=11. | | 5x-0.5=6x | | g=8+2/9 | | -2(-c-20=-2c-20 | | 7x2+5x–1=2x2+3x+2 | | 4x+6x+(2*5)=4(3+2)-x | | 3h=10+4h | | 40=-1/3(12x+30)+6 | | -7(7x-3)=-49x+21 | | -6+{1}{2}12a=7 | | 8-6b=-4-4b | | 14x-11=90/x+1 | | X²-10x-75=0 | | |4x|=16 | | 3x+7=20+2x | | -4=11-3w | | x/14+18=18 | | -10+9s=8+10s+s | | 3v=1+2v | | 3x-7=2x-20 | | 1,5x+4=13 | | -3v-8=1 | | 7a-4=25 | | 14x^2-12x=90 | | 1.4y=9.8 | | 28+12x=8x-28 |

Equations solver categories