If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8-8r(-2-8r)=2-7(-6-6r)
We move all terms to the left:
-8-8r(-2-8r)-(2-7(-6-6r))=0
We add all the numbers together, and all the variables
-8r(-8r-2)-(2-7(-6r-6))-8=0
We multiply parentheses
64r^2+16r-(2-7(-6r-6))-8=0
We calculate terms in parentheses: -(2-7(-6r-6)), so:We get rid of parentheses
2-7(-6r-6)
determiningTheFunctionDomain -7(-6r-6)+2
We multiply parentheses
42r+42+2
We add all the numbers together, and all the variables
42r+44
Back to the equation:
-(42r+44)
64r^2+16r-42r-44-8=0
We add all the numbers together, and all the variables
64r^2-26r-52=0
a = 64; b = -26; c = -52;
Δ = b2-4ac
Δ = -262-4·64·(-52)
Δ = 13988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13988}=\sqrt{4*3497}=\sqrt{4}*\sqrt{3497}=2\sqrt{3497}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{3497}}{2*64}=\frac{26-2\sqrt{3497}}{128} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{3497}}{2*64}=\frac{26+2\sqrt{3497}}{128} $
| 2g−7=3 | | 91+16m=299 | | 9x-x+5=6x5 | | -12=6=2t | | 24−4r=16 | | -2p+16=10 | | 7+1/7m=8 | | 2=c4−1 | | x+12+2×=20+3×-8 | | -9b-81=84 | | 6x-9=-2x+3 | | -5-8m=85 | | 30=y+19 | | 6x+3=2x3 | | 6x=0.54 | | -y/5=-36 | | 5x+7=3x-(2x-3 | | 4z−11=1 | | -37=u/3 | | 2x3-x2-6x-1=0 | | t÷125 =−103 | | -2/3(3z-4)+3z=5/6 | | t/5/12=3/10 | | 16=2x-5+x | | m/5-71=24 | | 5x+4x=120 | | c4− 2=2 | | 120=4x+5x | | 17=m-10 | | 3(x-5)=7x-27 | | 8m-8=7m+2 | | 16=2x−5+x |