-7z+12=2-z+8-1/3z

Simple and best practice solution for -7z+12=2-z+8-1/3z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7z+12=2-z+8-1/3z equation:



-7z+12=2-z+8-1/3z
We move all terms to the left:
-7z+12-(2-z+8-1/3z)=0
Domain of the equation: 3z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
-7z-(-1z-1/3z+10)+12=0
We get rid of parentheses
-7z+1z+1/3z-10+12=0
We multiply all the terms by the denominator
-7z*3z+1z*3z-10*3z+12*3z+1=0
Wy multiply elements
-21z^2+3z^2-30z+36z+1=0
We add all the numbers together, and all the variables
-18z^2+6z+1=0
a = -18; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·(-18)·1
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{3}}{2*-18}=\frac{-6-6\sqrt{3}}{-36} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{3}}{2*-18}=\frac{-6+6\sqrt{3}}{-36} $

See similar equations:

| 13/7n+6=13 | | 6x+15=13x | | |2x-8|+3=5 | | 2n+4n-2=61 | | 7/4z+8=6 | | 4x+12=3x-48 | | -3(⅔x+6)=-26 | | 9×d=70+2 | | 6567567567567567567567567567567567*x=23456780412347890234578902345245454454545 | | 7/4z+8=8 | | y+49=23 | | 2x+-5=30 | | 30÷g=36-26 | | 2/3p+4=11 | | 5d-3=7d | | -x2-4x;x=-3 | | 3-w=-7 | | 5x-12+37=180 | | 6x+3=446 | | 9/5y+13=4 | | 3/2t+3=9 | | 3x+4x=x+6x | | 5s+2=7s | | 3x+3=10x+3 | | 3d+2=13d | | 8=y+9/3 | | 8x-17+19=90 | | 11/6s+9=11 | | p=97p | | 2n(2n-14)=-24 | | 1/7a+5=12 | | 6x+2-5=8(-2x+1) |

Equations solver categories