If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x+(1/2)(6x+8)-5x+12=-20
We move all terms to the left:
-7x+(1/2)(6x+8)-5x+12-(-20)=0
Domain of the equation: 2)(6x+8)!=0We add all the numbers together, and all the variables
x∈R
-7x+(+1/2)(6x+8)-5x+12-(-20)=0
We add all the numbers together, and all the variables
-12x+(+1/2)(6x+8)+32=0
We multiply parentheses ..
(+6x^2+1/2*8)-12x+32=0
We multiply all the terms by the denominator
(+6x^2+1-12x*2*8)+32*2*8)=0
We add all the numbers together, and all the variables
(+6x^2+1-12x*2*8)=0
We get rid of parentheses
6x^2-12x*2*8+1=0
Wy multiply elements
6x^2-192x*8+1=0
Wy multiply elements
6x^2-1536x+1=0
a = 6; b = -1536; c = +1;
Δ = b2-4ac
Δ = -15362-4·6·1
Δ = 2359272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2359272}=\sqrt{4*589818}=\sqrt{4}*\sqrt{589818}=2\sqrt{589818}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1536)-2\sqrt{589818}}{2*6}=\frac{1536-2\sqrt{589818}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1536)+2\sqrt{589818}}{2*6}=\frac{1536+2\sqrt{589818}}{12} $
| 8−3f=–4 | | 5(4y+7)=175 | | 1/2y+8=-10 | | 5/8=2x+3/4 | | X^0+3x=180 | | 2x*3(x-1)=3x+11 | | 3a–5=–8(6+5a) | | 11-5a=51+11 | | -8v+4(v-6)=-4 | | 3/8=18/x | | 3x-2+4x+2=77 | | 1/3(6x-3)=2 | | -4-2n+7+1=-99 | | x-3.52=7.91 | | −2(n−5)=26 | | 36=-7x+1 | | x-5+3x+7=14 | | X+1/18=8/9+x-9/2 | | {3x}{4}+8=20−(43x)+8=20 | | (0.25+x)*(0.15+x)-x=0 | | 2.7-8y=5(-5.4y+7) | | 1/3(2x-3)=-5 | | -12-20x=-6x+9 | | 840=x+5x | | 4x-21=9-2x | | 31.50+4.50g=2.25 | | -18=5(w-6)-8w | | 5v-14=66 | | -4n+5(n-2)=-3(n+6) | | 46/w=2 | | 7x+5=2 | | 8-4m=12 |