-7x(x+6)+50=14-8x

Simple and best practice solution for -7x(x+6)+50=14-8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7x(x+6)+50=14-8x equation:



-7x(x+6)+50=14-8x
We move all terms to the left:
-7x(x+6)+50-(14-8x)=0
We add all the numbers together, and all the variables
-7x(x+6)-(-8x+14)+50=0
We multiply parentheses
-7x^2-42x-(-8x+14)+50=0
We get rid of parentheses
-7x^2-42x+8x-14+50=0
We add all the numbers together, and all the variables
-7x^2-34x+36=0
a = -7; b = -34; c = +36;
Δ = b2-4ac
Δ = -342-4·(-7)·36
Δ = 2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2164}=\sqrt{4*541}=\sqrt{4}*\sqrt{541}=2\sqrt{541}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{541}}{2*-7}=\frac{34-2\sqrt{541}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{541}}{2*-7}=\frac{34+2\sqrt{541}}{-14} $

See similar equations:

| 5x-9=-6x+90 | | 2x+1/2=44 | | 1÷2×(3÷5x-1÷2)=1÷4 | | (X+7)(y-5)=35 | | 3x+13=16x | | 0=x2+12x-25 | | 324+6x=540 | | -0.2x+5.39=-0.7x+5.89 | | 500x-0.93=700x+0.65 | | 8c-16=15c+40 | | 3.5x-57=1.1x+3 | | 6x-45=180 | | 7x+48+5x=180 | | 4.5=7x+6.6 | | 1.2x-5+2x=110 | | -0.04x=-1.6 | | (x/2)+13=2x-11 | | −2(2x+-3)−2=−4x+4 | | 9x+7.52=3x+17 | | 2x4-7x-3=0 | | 5b+6-6b+2=1 | | 3.1x=-16.12 | | 48+8x+4+13x+2=180 | | x-7=4.39 | | 6(2x-1)=6x-2 | | -5y=3.05 | | 6(2x-1)=12x-1 | | (15-9)^2=x | | 15-2=-x | | -3(2+6)+5x=12x+2 | | 15/3x=0 | | 3y/4=15y= |

Equations solver categories