-7x(8-2x)=-4(x+5)

Simple and best practice solution for -7x(8-2x)=-4(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7x(8-2x)=-4(x+5) equation:



-7x(8-2x)=-4(x+5)
We move all terms to the left:
-7x(8-2x)-(-4(x+5))=0
We add all the numbers together, and all the variables
-7x(-2x+8)-(-4(x+5))=0
We multiply parentheses
14x^2-56x-(-4(x+5))=0
We calculate terms in parentheses: -(-4(x+5)), so:
-4(x+5)
We multiply parentheses
-4x-20
Back to the equation:
-(-4x-20)
We get rid of parentheses
14x^2-56x+4x+20=0
We add all the numbers together, and all the variables
14x^2-52x+20=0
a = 14; b = -52; c = +20;
Δ = b2-4ac
Δ = -522-4·14·20
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-12\sqrt{11}}{2*14}=\frac{52-12\sqrt{11}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+12\sqrt{11}}{2*14}=\frac{52+12\sqrt{11}}{28} $

See similar equations:

| f/5-2=15 | | 16+f=50 | | -4h+7=19 | | 12=8/3-x+4 | | 11q-5q-21=3 | | −11+20⁢x=4⁢(⁠17⁢x+12⁠)+x | | b-23=37 | | 1/4g−16=−8 | | 6^y+3=7 | | 180=2m+18+76 | | 6^y+3=12 | | 6y+34=46 | | −6p=−48 | | S=5+5t+1,25t^2 | | 4x+40=65 | | y=400(.75)^3 | | 6x-2+2x+5=67 | | 0,5^(x)=0,0625 | | 18-22(17)^3x=4 | | 6(2+x)=78 | | 2/n=14÷n+30 | | 3x−15=2x+6 | | 2(4x+5)-2=-2x+44 | | a/6-12=14 | | -1x+9=-17 | | 1.6=m-2.4 | | −9x+10=x−20 | | 6(2-x)=78 | | k/10+7=9 | | 5c+8c+60=80 | | -10x-5=9 | | -3(-7-2x)=-87 |

Equations solver categories