-7k(k+5)=3k-(8k-1)

Simple and best practice solution for -7k(k+5)=3k-(8k-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7k(k+5)=3k-(8k-1) equation:



-7k(k+5)=3k-(8k-1)
We move all terms to the left:
-7k(k+5)-(3k-(8k-1))=0
We multiply parentheses
-7k^2-35k-(3k-(8k-1))=0
We calculate terms in parentheses: -(3k-(8k-1)), so:
3k-(8k-1)
We get rid of parentheses
3k-8k+1
We add all the numbers together, and all the variables
-5k+1
Back to the equation:
-(-5k+1)
We get rid of parentheses
-7k^2-35k+5k-1=0
We add all the numbers together, and all the variables
-7k^2-30k-1=0
a = -7; b = -30; c = -1;
Δ = b2-4ac
Δ = -302-4·(-7)·(-1)
Δ = 872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{872}=\sqrt{4*218}=\sqrt{4}*\sqrt{218}=2\sqrt{218}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{218}}{2*-7}=\frac{30-2\sqrt{218}}{-14} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{218}}{2*-7}=\frac{30+2\sqrt{218}}{-14} $

See similar equations:

| 7x-6=4x+11=43 | | 1-5b=-4b+10 | | 3x+6=2x+5=180 | | 6(x-2)=4x*10 | | d-9/2=4 | | 7x-6=4x+11=180 | | 5t+5=-9+3t | | (4^x/12^x)=1/3 | | -6(x=3)-5=-2 | | -1=n+234/5 | | 5a-2=2a-11 | | 10+4c-4=8c-10 | | -2(u+6.68)=4.14 | | 5m-8m-4=10-m | | 35/x=7/3 | | 17b+17=986 | | 379.52-1600=b | | 3x-26=12+5x | | 7x+4-2+7x=180 | | -17=4+3a | | 4-2s=-3s | | 4x+6x+40=180 | | 8(-8x+5)=488 | | (2+x)/(7+x)=1/3 | | 3x-7=32x=13 | | 2(d+3)+2=10 | | -b+10=9b-10 | | 14√x+15= | | 14=x/4=7 | | 26(j-958)=130 | | y=3X5-9 | | 3.2(2x-(-2.1))+(0.8)=-1 |

Equations solver categories