-7/8x+13/3x=-83/24

Simple and best practice solution for -7/8x+13/3x=-83/24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/8x+13/3x=-83/24 equation:



-7/8x+13/3x=-83/24
We move all terms to the left:
-7/8x+13/3x-(-83/24)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
-7/8x+13/3x+83/24=0
We calculate fractions
5976x^2/1152x^2+(-1008x)/1152x^2+4992x/1152x^2=0
We multiply all the terms by the denominator
5976x^2+(-1008x)+4992x=0
We add all the numbers together, and all the variables
5976x^2+4992x+(-1008x)=0
We get rid of parentheses
5976x^2+4992x-1008x=0
We add all the numbers together, and all the variables
5976x^2+3984x=0
a = 5976; b = 3984; c = 0;
Δ = b2-4ac
Δ = 39842-4·5976·0
Δ = 15872256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{15872256}=3984$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3984)-3984}{2*5976}=\frac{-7968}{11952} =-2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3984)+3984}{2*5976}=\frac{0}{11952} =0 $

See similar equations:

| -4s+8=12 | | 8/15x+1120=x | | 99/t=-11 | | -2y+4.2=1.8+3y | | -3x-2+5x=12-4x+4 | | 6/x=-50/25 | | -3x+2+5x=12-4x+4 | | 0.01×x=0.04 | | -1+6x+5=2x-4 | | 2(7+8)=4y | | -31+x/3=-7 | | 4x-2=5-7x+15 | | 7(w+5)-4w=14 | | A(t)=0.2t+73 | | -38=-6x+8(x-4) | | 7(c+5)=-1•4 | | x-8/4=-4 | | -39=-6x+8(x-4) | | 22=-8u+2(u+5) | | 22=-8+2(u+5) | | 2n-5/3-6=10 | | 4(-x=4=12 | | -5x+12=53 | | 4(y-6)=-56 | | n+3+8n=-24 | | 34=w/9+ 31 | | 6=2/y | | 4a-12=a | | 4a+12=-a | | 3a-12=-a | | 3(4x-8)-3x+5=17 | | 4a-12=-a |

Equations solver categories