If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7/4k-5/6=3+3/2k
We move all terms to the left:
-7/4k-5/6-(3+3/2k)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 2k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-7/4k-(3/2k+3)-5/6=0
We get rid of parentheses
-7/4k-3/2k-3-5/6=0
We calculate fractions
(-80k^2)/288k^2+(-504k)/288k^2+(-432k)/288k^2-3=0
We multiply all the terms by the denominator
(-80k^2)+(-504k)+(-432k)-3*288k^2=0
Wy multiply elements
(-80k^2)-864k^2+(-504k)+(-432k)=0
We get rid of parentheses
-80k^2-864k^2-504k-432k=0
We add all the numbers together, and all the variables
-944k^2-936k=0
a = -944; b = -936; c = 0;
Δ = b2-4ac
Δ = -9362-4·(-944)·0
Δ = 876096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{876096}=936$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-936)-936}{2*-944}=\frac{0}{-1888} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-936)+936}{2*-944}=\frac{1872}{-1888} =-117/118 $
| 12b=3=-2b-4 | | 4^x^2=256 | | |x^2+6x-10|=8-4x | | 14-23=12y-4y-5y | | 4(0.75y)=3y | | 4x-(2x+8)=6-(4x-5) | | 3x+2=-94 | | 12x(x-5)=108 | | P+p+2p=48 | | 2+6(4x-2)=9-5(2x+3) | | (3+5x)(2-3x)=12-15x(2) | | 4(32.5-0.75y)+3y=130 | | 9x+28=180 | | Y=2.9x-2 | | 2/x=5/3x+1 | | 7x+3-3x=4x+3 | | 5*(√7-x)=13-x | | a-1+3a-5=4 | | 2*x*x-0.9*x+0.9=0 | | 5+7i/8+5i=0 | | b/15=1.5 | | 2-(4+m)=3m+8 | | 3(g-7)=-30 | | 2(y+1)+y/2+y-2=10 | | 2-4+2m+-3m=8+3m+-3m | | 3/7q=9 | | 2t^2+t+3=0 | | 7/8q=14 | | (z+9)(z+9)=-64 | | 5x+(-3)+6x+3=5x+6x(-3)+3 | | 2(n-7)=3(n+2) | | m/3+2=6 |