-7/2t-2=-2-7t

Simple and best practice solution for -7/2t-2=-2-7t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/2t-2=-2-7t equation:



-7/2t-2=-2-7t
We move all terms to the left:
-7/2t-2-(-2-7t)=0
Domain of the equation: 2t!=0
t!=0/2
t!=0
t∈R
We add all the numbers together, and all the variables
-7/2t-(-7t-2)-2=0
We get rid of parentheses
-7/2t+7t+2-2=0
We multiply all the terms by the denominator
7t*2t+2*2t-2*2t-7=0
Wy multiply elements
14t^2+4t-4t-7=0
We add all the numbers together, and all the variables
14t^2-7=0
a = 14; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·14·(-7)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*14}=\frac{0-14\sqrt{2}}{28} =-\frac{14\sqrt{2}}{28} =-\frac{\sqrt{2}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*14}=\frac{0+14\sqrt{2}}{28} =\frac{14\sqrt{2}}{28} =\frac{\sqrt{2}}{2} $

See similar equations:

| 2x+3=256 | | 16d=22=5d | | 2x+3=265 | | 7(n-8)=3(n+4) | | 21y+7=36y-18 | | 9.49h=14.6 | | 7y+1=y-11 | | (x*0.08)+x=26976 | | 4^2x+14⋅4^x+45=0 | | -8p+78=-20p+114 | | 47y+14=19y-52 | | 10x=5x+6 | | √4m+3=√10m+4 | | 6=i+4 | | 34=r+11 | | 4.5=i+3 | | 4^(x-3)=11 | | 2x-11+3x=44 | | 21x+43=2x-31 | | 4y=1/12 | | 2t+6=3t-6 | | 16y-53=8y+14 | | 9y-21=15y+7 | | 7(3+4(2-5))=x | | 4x+20+15x-11=-24 | | 4x+20=15x-11=-24 | | 8x^2+6x-137=0 | | 17x+4=140 | | 3t-6+2t+6=180 | | 3(x-5)+2x=13-3x | | 32+3h+4=180 | | C=5x^2-1000x+60000 |

Equations solver categories