If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7/11a+2=3-5/22a
We move all terms to the left:
-7/11a+2-(3-5/22a)=0
Domain of the equation: 11a!=0
a!=0/11
a!=0
a∈R
Domain of the equation: 22a)!=0We add all the numbers together, and all the variables
a!=0/1
a!=0
a∈R
-7/11a-(-5/22a+3)+2=0
We get rid of parentheses
-7/11a+5/22a-3+2=0
We calculate fractions
(-154a)/242a^2+55a/242a^2-3+2=0
We add all the numbers together, and all the variables
(-154a)/242a^2+55a/242a^2-1=0
We multiply all the terms by the denominator
(-154a)+55a-1*242a^2=0
We add all the numbers together, and all the variables
55a+(-154a)-1*242a^2=0
Wy multiply elements
-242a^2+55a+(-154a)=0
We get rid of parentheses
-242a^2+55a-154a=0
We add all the numbers together, and all the variables
-242a^2-99a=0
a = -242; b = -99; c = 0;
Δ = b2-4ac
Δ = -992-4·(-242)·0
Δ = 9801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9801}=99$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-99)-99}{2*-242}=\frac{0}{-484} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-99)+99}{2*-242}=\frac{198}{-484} =-9/22 $
| (25+43)/2x7=x | | z-9=17 | | 6r^2-36r=96 | | -3/5x=-7 | | F(x)=6x^2-8 | | 12x+38+28=90 | | y+17=-3 | | 2x+5=5x-25=180 | | 3.8^x=39 | | 4p-2340=2•(14-5) | | 4(x-6)=- | | (3y^2)^2=9y | | 20-3y=5-2y | | 8(2k-5)=-16+4(-6+4K) | | 2(4x-7)+5x=2 | | 6+4/x=5 | | 9x=2.8=6x+4.5 | | -5x-9=2 | | 2m+4÷3-3=-10 | | 4.9t^2-14t=98 | | 4.9t^2-14t=-98 | | 9x-27/2=45x-15/4 | | 2*7+2*3x=5+6x | | x+3/2=-5 | | 2(2x+4)=3(2-2) | | 2.3x-1.6=8.8-2.9.x | | 3/8k+13=43 | | 2.4x10^3=x/(0.16-2x) | | 2.4x10^3=(x)(x)/(0.16-2x)^2 | | 8s+3(12-7s=49 | | 2x(3x+7x-2x=96÷2x | | 4+2p=10(3/5p-3) |