-7+0.5y+11+1/6y=9

Simple and best practice solution for -7+0.5y+11+1/6y=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7+0.5y+11+1/6y=9 equation:



-7+0.5y+11+1/6y=9
We move all terms to the left:
-7+0.5y+11+1/6y-(9)=0
Domain of the equation: 6y!=0
y!=0/6
y!=0
y∈R
We add all the numbers together, and all the variables
0.5y+1/6y-5=0
We multiply all the terms by the denominator
(0.5y)*6y-5*6y+1=0
We add all the numbers together, and all the variables
(+0.5y)*6y-5*6y+1=0
We multiply parentheses
0y^2-5*6y+1=0
Wy multiply elements
0y^2-30y+1=0
We add all the numbers together, and all the variables
y^2-30y+1=0
a = 1; b = -30; c = +1;
Δ = b2-4ac
Δ = -302-4·1·1
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-8\sqrt{14}}{2*1}=\frac{30-8\sqrt{14}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+8\sqrt{14}}{2*1}=\frac{30+8\sqrt{14}}{2} $

See similar equations:

| x-(x*0.2)=2500 | | -8-6y-y=-2(y-10) | | -6+y+6-3y=15 | | -4.5+6y+1-3y=-17 | | 23-0.5x=25-8 | | 2(x-3)=32/8 | | 23-1/2x=25-8 | | 6(5+k)=5(1+k) | | 0.2+2.5y-2.3=-9.8 | | 263=x-(-139) | | 0.2.5y-2.3=-9.8 | | 19.6x=28.2^2 | | 6.2(x+2)+4.2(3-x)=10 | | 0.8=x/1.5 | | x/160=14.5 | | 45x+12000=980 | | 3+b=40.20 | | x(2x+6)=(2x+9)(x-9) | | 7x+1-2x=4-5x-1 | | 7.64=2p | | E-x*15=322.5 | | 7(1x)=224 | | 3=-3/5+w | | 3x-6=-4x+1 | | y-5.8=14.2 | | 12(11-x)=60 | | 10(20+(-0.5y)+5y=200 | | 20(10+(-0.25))+5y=200 | | n^2-12n+11=0 | | 42=64x8654 | | 8.22x-45.34=70 | | 8.22x-70=45.34 |

Equations solver categories