-7(x+2)3x+7=7x+8

Simple and best practice solution for -7(x+2)3x+7=7x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7(x+2)3x+7=7x+8 equation:


Simplifying
-7(x + 2) * 3x + 7 = 7x + 8

Reorder the terms:
-7(2 + x) * 3x + 7 = 7x + 8

Reorder the terms for easier multiplication:
-7 * 3x(2 + x) + 7 = 7x + 8

Multiply -7 * 3
-21x(2 + x) + 7 = 7x + 8
(2 * -21x + x * -21x) + 7 = 7x + 8
(-42x + -21x2) + 7 = 7x + 8

Reorder the terms:
7 + -42x + -21x2 = 7x + 8

Reorder the terms:
7 + -42x + -21x2 = 8 + 7x

Solving
7 + -42x + -21x2 = 8 + 7x

Solving for variable 'x'.

Reorder the terms:
7 + -8 + -42x + -7x + -21x2 = 8 + 7x + -8 + -7x

Combine like terms: 7 + -8 = -1
-1 + -42x + -7x + -21x2 = 8 + 7x + -8 + -7x

Combine like terms: -42x + -7x = -49x
-1 + -49x + -21x2 = 8 + 7x + -8 + -7x

Reorder the terms:
-1 + -49x + -21x2 = 8 + -8 + 7x + -7x

Combine like terms: 8 + -8 = 0
-1 + -49x + -21x2 = 0 + 7x + -7x
-1 + -49x + -21x2 = 7x + -7x

Combine like terms: 7x + -7x = 0
-1 + -49x + -21x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(1 + 49x + 21x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(1 + 49x + 21x2)' equal to zero and attempt to solve: Simplifying 1 + 49x + 21x2 = 0 Solving 1 + 49x + 21x2 = 0 Begin completing the square. Divide all terms by 21 the coefficient of the squared term: Divide each side by '21'. 0.04761904762 + 2.333333333x + x2 = 0 Move the constant term to the right: Add '-0.04761904762' to each side of the equation. 0.04761904762 + 2.333333333x + -0.04761904762 + x2 = 0 + -0.04761904762 Reorder the terms: 0.04761904762 + -0.04761904762 + 2.333333333x + x2 = 0 + -0.04761904762 Combine like terms: 0.04761904762 + -0.04761904762 = 0.00000000000 0.00000000000 + 2.333333333x + x2 = 0 + -0.04761904762 2.333333333x + x2 = 0 + -0.04761904762 Combine like terms: 0 + -0.04761904762 = -0.04761904762 2.333333333x + x2 = -0.04761904762 The x term is 2.333333333x. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333x + 1.361111112 + x2 = -0.04761904762 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333x + x2 = -0.04761904762 + 1.361111112 Combine like terms: -0.04761904762 + 1.361111112 = 1.31349206438 1.361111112 + 2.333333333x + x2 = 1.31349206438 Factor a perfect square on the left side: (x + 1.166666667)(x + 1.166666667) = 1.31349206438 Calculate the square root of the right side: 1.146076814 Break this problem into two subproblems by setting (x + 1.166666667) equal to 1.146076814 and -1.146076814.

Subproblem 1

x + 1.166666667 = 1.146076814 Simplifying x + 1.166666667 = 1.146076814 Reorder the terms: 1.166666667 + x = 1.146076814 Solving 1.166666667 + x = 1.146076814 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 1.146076814 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 1.146076814 + -1.166666667 x = 1.146076814 + -1.166666667 Combine like terms: 1.146076814 + -1.166666667 = -0.020589853 x = -0.020589853 Simplifying x = -0.020589853

Subproblem 2

x + 1.166666667 = -1.146076814 Simplifying x + 1.166666667 = -1.146076814 Reorder the terms: 1.166666667 + x = -1.146076814 Solving 1.166666667 + x = -1.146076814 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -1.146076814 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -1.146076814 + -1.166666667 x = -1.146076814 + -1.166666667 Combine like terms: -1.146076814 + -1.166666667 = -2.312743481 x = -2.312743481 Simplifying x = -2.312743481

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.020589853, -2.312743481}

Solution

x = {-0.020589853, -2.312743481}

See similar equations:

| f(x)=-0.0213*(x^2-190*x) | | 5t+3t+8t= | | 40x=35(x+y) | | 2x^3+24x^2-56x=0 | | 2x-4+4x-56=180 | | x/8-4=3/16 | | 2(10)=15x+6.5 | | (15x+31)=(19x+3) | | 3.14(10)(10)= | | 5y+15=50 | | 8(q+7)= | | 2/12x3/12=8/12 | | 7+4x=103 | | 4x^2-400x=0 | | 5r^2+8r-5=0 | | 0.69*3800= | | 30+x^2+5x=180 | | 2x+2-3x=6 | | -15=1/3n | | (-3+2i)(4-4i)=0 | | 10/20-1/5 | | 30x+x^2+5x=180 | | 1/6(-12x) | | 924=2800-0.33 | | 8-(1-9x)= | | 4(w+1)-5=15 | | -0.5x+7.5=6 | | 2(5x)+3x= | | -0.5+7.5=6 | | 2.8x=5.3 | | 3/2x= | | 5x+23x-9=7(4x+7) |

Equations solver categories