If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+15x+36=0
a = -6; b = 15; c = +36;
Δ = b2-4ac
Δ = 152-4·(-6)·36
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-33}{2*-6}=\frac{-48}{-12} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+33}{2*-6}=\frac{18}{-12} =-1+1/2 $
| -14x^2-4x+234=0 | | 6x-2+3x=20x-40 | | 80=20t-5t^2 | | -4(x+6)-12=48 | | 7(d-1)=56 | | 7(2x+1)-3x=62 | | 2(7x+4)-4(8x-3)=0 | | 11m-(6m-5)=28 | | z+3z+8=-4 | | 6x-2+3=20x-40 | | .005x^2-0.3x-4=25 | | 5(x-3)+3(-2x+2)=0 | | 5x=3x-27 | | 2(2x+4)-3(x-1)=16 | | x+20+130+x+40=180 | | 1=-3(-1)+b | | 8a/9=24 | | (2x-1)=-2(3x+4) | | 10x+5=x-40 | | -(4x+4)=0 | | 4(x-3)-2x=x-10 | | 8x+4=2x-13 | | 24+p=12+2p | | 3x-4+9+-2=54 | | 7^-5y=8 | | 4x^+5-12x=0 | | 3+4d-14=15-5d=4d | | 10x+22=8x−4. | | x+3(-x-50)+2x+30=180 | | 3.64÷1.4=e | | 85.6=8(m+3.9) | | 105+(14x-9)=180 |