-6x+1=3x(2x+1)+x

Simple and best practice solution for -6x+1=3x(2x+1)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6x+1=3x(2x+1)+x equation:



-6x+1=3x(2x+1)+x
We move all terms to the left:
-6x+1-(3x(2x+1)+x)=0
We calculate terms in parentheses: -(3x(2x+1)+x), so:
3x(2x+1)+x
We add all the numbers together, and all the variables
x+3x(2x+1)
We multiply parentheses
6x^2+x+3x
We add all the numbers together, and all the variables
6x^2+4x
Back to the equation:
-(6x^2+4x)
We get rid of parentheses
-6x^2-6x-4x+1=0
We add all the numbers together, and all the variables
-6x^2-10x+1=0
a = -6; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·(-6)·1
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{31}}{2*-6}=\frac{10-2\sqrt{31}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{31}}{2*-6}=\frac{10+2\sqrt{31}}{-12} $

See similar equations:

| 0=x(x)+16x-260 | | 4x-1=7x-6 | | x(x–1)=30 | | 16=h-(-4) | | 6p+10=89 | | 3m-4.5m=15 | | 24+7x=6+4x | | 4a+7=107 | | 2(4u-3)=18+2u | | 2(-12+-4x+x^2)=0 | | 3x+13=7x-15 | | 18x-5=3(6x20) | | 18x-5=3(6x20 | | 16x-38+7x+11=180 | | 28=4+9(b+7) | | X+19=2(x+6) | | 250=2w | | 8x-9=9x-21 | | 3x+2=8x-10 | | n/5+2=1 | | 4(x+10)=2(x+22) | | 7c-4c=-25 | | x2+2x-8= | | 6x+16+24=88 | | 4*k=12 | | 7*f=49 | | 7(m+1)=5m+21 | | y*2=12 | | 90x^2=0 | | r*1=3 | | 9*z=45 | | 34+4z=-9(5z+6) |

Equations solver categories