If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6m+48m^2=0
a = 48; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·48·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*48}=\frac{0}{96} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*48}=\frac{12}{96} =1/8 $
| 3(2m-1)=4(3m-1) | | X^2+1.78x^2=150 | | x^2=2√89 | | 2,4/x=0.4/2 | | 0,3c-0,01c=0 | | 2x2+42x−6=0 | | 2x2+42x−6=0. | | 0,3c-0,01c2=0 | | 8n-2=4n-22 | | 15x^2-30x+11,25=0 | | c=350+0.65 | | 12x+3=2x+24 | | 7x2-3x+1=0 | | 52y=4 | | 4(3-2x)=-20 | | (3x+18)-7=(5x+1)–4 | | 6a+10=a-35= | | 4x-5=10x-x | | 8−7y=−34 | | 7-c+1=2 | | 2(-72+w+w^2)=0 | | -1/6+7/3-9x+1/5=1/3-1/2 | | (q-10)*3=11 | | 0.5y=450 | | 5(x+49=30+3x | | 2x(14=7)= | | 0.5y=350 | | -26+3=39+10x | | 3x+16=72−4x | | 2x+10+120+3x-20+180=540 | | 2w^2+2w-144=0 | | 9+8=-12+x |