If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6(y+1)=(-2y)(-8)(-4y)
We move all terms to the left:
-6(y+1)-((-2y)(-8)(-4y))=0
We multiply parentheses
-6y-((-2y)(-8)(-4y))-6=0
We multiply parentheses ..
-6y-((+16y)(-4y))-6=0
We calculate terms in parentheses: -((+16y)(-4y)), so:We get rid of parentheses
(+16y)(-4y)
We multiply parentheses ..
(-64y^2)
We get rid of parentheses
-64y^2
Back to the equation:
-(-64y^2)
64y^2-6y-6=0
a = 64; b = -6; c = -6;
Δ = b2-4ac
Δ = -62-4·64·(-6)
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{393}}{2*64}=\frac{6-2\sqrt{393}}{128} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{393}}{2*64}=\frac{6+2\sqrt{393}}{128} $
| 3y-7=-11 | | 14c=2968 | | 12c=2968 | | 3(m+1)=-2(1-2m) | | 4x-4(6x-20)=200 | | t^2+121t-5=0 | | 3x-2(4-5x)=16-3x | | -x-6(8x+2)=-6-8(1+6x) | | 4x-4(6x-20=200 | | 2x+1/5x+6=1/7 | | 10=1/2y+8 | | (-5b)+8b=-2(b-1) | | -6(x+2)=-7(1+x) | | 7.8a+2=2.6a+21.76 | | 3+2n=-(7n+6) | | 5w^2-15w-20=0 | | 5x/2+1/4=4 | | -3(8p+7)=29+p | | 4{(w-6)=3(+1) | | 5.7x+53=7.2x+14 | | -6(y+1)=-2y-8-4y | | 6(-4m+1)+7(7m+5)=-34 | | 119-×=3x+11 | | 5.7x=53=7.2x+14 | | 6(3+8a)=18+a | | 6x+140=180 | | 3(7)^4x=15 | | 4.52-5h=5.2 | | -5(-3x+4)+10x=25+10x | | 78=-2(x-5)-6(x-2) | | -5h-10+h=10-9h | | 9x-19=7x=11 |