-6(w+1)8w=2(w-3)

Simple and best practice solution for -6(w+1)8w=2(w-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6(w+1)8w=2(w-3) equation:



-6(w+1)8w=2(w-3)
We move all terms to the left:
-6(w+1)8w-(2(w-3))=0
We multiply parentheses
-48w^2-48w-(2(w-3))=0
We calculate terms in parentheses: -(2(w-3)), so:
2(w-3)
We multiply parentheses
2w-6
Back to the equation:
-(2w-6)
We get rid of parentheses
-48w^2-48w-2w+6=0
We add all the numbers together, and all the variables
-48w^2-50w+6=0
a = -48; b = -50; c = +6;
Δ = b2-4ac
Δ = -502-4·(-48)·6
Δ = 3652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3652}=\sqrt{4*913}=\sqrt{4}*\sqrt{913}=2\sqrt{913}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{913}}{2*-48}=\frac{50-2\sqrt{913}}{-96} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{913}}{2*-48}=\frac{50+2\sqrt{913}}{-96} $

See similar equations:

| 780=500+7x | | Z=2p | | 2x+24x64=0 | | 680=500+7x | | 530=500+7x | | 2x/7=8/3 | | 384/x=24 | | 18=3(x+4) | | 22=a+14 | | 430=500+7x | | F(2a)=(2a)+8 | | 10^(3+x)=0.4 | | 3x+0.3(1)=0.3 | | 24(34+r)=1200 | | 7+7=19+x | | F(2a)=2a+8 | | 3x+10=6x+5=x | | 3x−(−5)=23 | | -x=7(x-21) | | -5(2x+3)=-7x-5x+3 | | (3x+5)-(2x+3)=10 | | 2y=y+48 | | x*7/2x-1/6=x+1/4 | | -x=7(-21+x) | | 6v–10=20 | | 25(x)=200 | | 1/2x-7=1/6(x-12) | | 11+3w=–19 | | X=7(x-21) | | M²+13m+42=0 | | 91.35=5.7(x+7.5)+3 | | 7a-6=14 |

Equations solver categories