-6(1-6r)=-2r(r+3)

Simple and best practice solution for -6(1-6r)=-2r(r+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6(1-6r)=-2r(r+3) equation:



-6(1-6r)=-2r(r+3)
We move all terms to the left:
-6(1-6r)-(-2r(r+3))=0
We add all the numbers together, and all the variables
-6(-6r+1)-(-2r(r+3))=0
We multiply parentheses
36r-(-2r(r+3))-6=0
We calculate terms in parentheses: -(-2r(r+3)), so:
-2r(r+3)
We multiply parentheses
-2r^2-6r
Back to the equation:
-(-2r^2-6r)
We get rid of parentheses
2r^2+6r+36r-6=0
We add all the numbers together, and all the variables
2r^2+42r-6=0
a = 2; b = 42; c = -6;
Δ = b2-4ac
Δ = 422-4·2·(-6)
Δ = 1812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1812}=\sqrt{4*453}=\sqrt{4}*\sqrt{453}=2\sqrt{453}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{453}}{2*2}=\frac{-42-2\sqrt{453}}{4} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{453}}{2*2}=\frac{-42+2\sqrt{453}}{4} $

See similar equations:

| 10=|-5n| | | 5v+1=3v-15 | | 14=-6x | | 3=r12 | | -22=-6+x | | 4x-16=3(2x-8) | | 1+4x=-5+5x | | 12(x+7)=-4(x+2) | | 2x+(3x+4)=26 | | -9+t=59 | | w/6+10=4 | | 4x^2-28x+46=0 | | 12.84/2.14=a | | 1+4p=3+2p | | 5÷p=75 | | r-16=51/2 | | (1/3)^3x2=128x | | 5x+7=5x−5​ | | 5/2=-2x-(2x-4)-1/2 | | 3/4f=21/2 | | 3a+12=a-2 | | 3x+5(x−4)−4=60 | | 5n+6=3n-4 | | -x/2+10=8 | | 14.2=6.34+c | | 12+y=50.73 | | 5x+2=10+6x | | 0.5^x=0.15 | | 8p-9=63 | | -4-4x=x+1 | | 8y+8y=64 | | 2(4-6v)=10v-234 |

Equations solver categories