If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+35x+30=0
a = -5; b = 35; c = +30;
Δ = b2-4ac
Δ = 352-4·(-5)·30
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{73}}{2*-5}=\frac{-35-5\sqrt{73}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{73}}{2*-5}=\frac{-35+5\sqrt{73}}{-10} $
| 9x-13=8x | | 5+2x=2x-3 | | 8+2x=7-4x | | 5-x=-3+2x | | r/2-4=19 | | 2x+15=3x10 | | 10/3=5/a | | 18/y=17 | | x^2+7x+1680=0 | | P=3a-9 | | 4a(-40)=0 | | 1(8x-0)-4(16-0)+5(10-3x)=0 | | 17262=2877s | | 8x-64+35x=0 | | 239=a-10 | | 6s+33=93 | | 2x+57=7x-13 | | 2x12=-21-9x | | (3x-3)^2=22 | | 4/x=24/48 | | X^2+24x-420=0 | | -x+39/10=1/10x | | -x39/10=1/10x | | -x+4=(1/10)x+(1/10) | | -x+39=x | | 6x+36+8=13 | | 6(x+6)+8=13 | | 10x+3(5x-1)=11 | | 5y+5(2y-9)=23 | | 4-5(x=3)=25 | | Y14x+2=9 | | 3x+1+7x-27=180 |