-5x-(7-4x)=-2x(3x-4)

Simple and best practice solution for -5x-(7-4x)=-2x(3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x-(7-4x)=-2x(3x-4) equation:



-5x-(7-4x)=-2x(3x-4)
We move all terms to the left:
-5x-(7-4x)-(-2x(3x-4))=0
We add all the numbers together, and all the variables
-5x-(-4x+7)-(-2x(3x-4))=0
We get rid of parentheses
-5x+4x-(-2x(3x-4))-7=0
We calculate terms in parentheses: -(-2x(3x-4)), so:
-2x(3x-4)
We multiply parentheses
-6x^2+8x
Back to the equation:
-(-6x^2+8x)
We add all the numbers together, and all the variables
-(-6x^2+8x)-1x-7=0
We get rid of parentheses
6x^2-8x-1x-7=0
We add all the numbers together, and all the variables
6x^2-9x-7=0
a = 6; b = -9; c = -7;
Δ = b2-4ac
Δ = -92-4·6·(-7)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{249}}{2*6}=\frac{9-\sqrt{249}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{249}}{2*6}=\frac{9+\sqrt{249}}{12} $

See similar equations:

| 6+5x=x-9x2 | | 6x+3+7x=90 | | 15+1x=2.50 | | -3(g-4)=36 | | 3(x-4)=-32(4-x) | | 10x-6x=31-5 | | (3x-9)=180 | | 0.9w=6.3 | | 120+10x=250-8x | | x-3=7x3 | | 8(-2w-1)=21 | | -36+7x=-56-2(3x+4) | | 1.8+7n=9.5+7n* | | -6=-3(n+8) | | x+4+5=2 | | 34=-4x-7x | | 7n+10-15n=10+9n | | -8.3=-7x+13.4 | | 24=−3(x−8) | | -4(2n-3)=12–8n | | s3+ 15=18 | | -m+-6m-7=0 | | (4x-3)=(2x+4) | | 13x-11=8x+9 | | -3(g-4)=12-3g | | 625=2x²-6x+9 | | -5=1+3h | | 2x6+3=17 | | -3(8+8x)=-4(-4+4) | | 1/4(8x+12=7 | | 4=-h-9 | | -16=-b+5b |

Equations solver categories