-5x(x-7)=2(2x+3)+x+7

Simple and best practice solution for -5x(x-7)=2(2x+3)+x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x(x-7)=2(2x+3)+x+7 equation:



-5x(x-7)=2(2x+3)+x+7
We move all terms to the left:
-5x(x-7)-(2(2x+3)+x+7)=0
We multiply parentheses
-5x^2+35x-(2(2x+3)+x+7)=0
We calculate terms in parentheses: -(2(2x+3)+x+7), so:
2(2x+3)+x+7
We add all the numbers together, and all the variables
x+2(2x+3)+7
We multiply parentheses
x+4x+6+7
We add all the numbers together, and all the variables
5x+13
Back to the equation:
-(5x+13)
We get rid of parentheses
-5x^2+35x-5x-13=0
We add all the numbers together, and all the variables
-5x^2+30x-13=0
a = -5; b = 30; c = -13;
Δ = b2-4ac
Δ = 302-4·(-5)·(-13)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-8\sqrt{10}}{2*-5}=\frac{-30-8\sqrt{10}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+8\sqrt{10}}{2*-5}=\frac{-30+8\sqrt{10}}{-10} $

See similar equations:

| 3x^2+6=5x^2-194 | | x-350=700 | | -4p+10=-26 | | 2y+14=-12 | | 9w-14w=45 | | 16(4-5m)=96(-m/2+1) | | 42x=90 | | 6=z/3-4 | | -2p-(-4+7p)=76 | | x+5x+x+12=180 | | -68+10x=67+x | | 100x+10x/100=154000 | | 4(y-2)=y+1 | | 13x-5+13x=11x-7+13x-2 | | 7x-8=12x+2 | | 19y=-30 | | 2x+10=4x-10=180 | | y/17=-10 | | 4r=r+12 | | 12x+1.75=54 | | 230.00+0.15x=321.50 | | -8x-35=-7(1+x) | | 12x-15=6+9 | | 11-w=2 | | 7(2y-2)=35 | | 2(4+8p)+4=46-2 | | 5(x+3)=5x+22 | | 12.99-1.75r=35 | | 0.2x–1.7=4.3 | | 12x-15=6=9 | | -170+9x=-x+170 | | 66x+2,454x-68=63(40x+22) |

Equations solver categories