-5x(6x+20)+10=9(4x-2)

Simple and best practice solution for -5x(6x+20)+10=9(4x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x(6x+20)+10=9(4x-2) equation:



-5x(6x+20)+10=9(4x-2)
We move all terms to the left:
-5x(6x+20)+10-(9(4x-2))=0
We multiply parentheses
-30x^2-100x-(9(4x-2))+10=0
We calculate terms in parentheses: -(9(4x-2)), so:
9(4x-2)
We multiply parentheses
36x-18
Back to the equation:
-(36x-18)
We get rid of parentheses
-30x^2-100x-36x+18+10=0
We add all the numbers together, and all the variables
-30x^2-136x+28=0
a = -30; b = -136; c = +28;
Δ = b2-4ac
Δ = -1362-4·(-30)·28
Δ = 21856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21856}=\sqrt{16*1366}=\sqrt{16}*\sqrt{1366}=4\sqrt{1366}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-136)-4\sqrt{1366}}{2*-30}=\frac{136-4\sqrt{1366}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-136)+4\sqrt{1366}}{2*-30}=\frac{136+4\sqrt{1366}}{-60} $

See similar equations:

| 6x+18=7x+10 | | 5(x-6)+8=7x+-4 | | 10+2x=6−2x | | 4000x−8000=16,000 | | 4000x−8000=16,000. | | 0.25(2d+1)=2d+0.25 | | n-(n2)=-60 | | 14.57+0.07x=15.07-0.16x | | -2x-2=9x-9 | | 2y^2+46y=0 | | 4(0.5f-02.5)=6+f | | 1/(7n-4n)=1/3n | | -2x+1=5x-16 | | 5x-2=-x-5 | | 3k^2-24k=0 | | 0.22(x+7)=0.2x+4.9 | | 360=2x-5+3x-25+5x+45 | | 7(p+1)=14p+7 | | -x-6=2x | | 4l+32=12l | | 5x=12x+15 | | 90+(1x-50)+1x=180 | | 4n+32=4n(×3) | | 4x^2-40x+106=0 | | 90+x-56+x=180 | | 4n+32=24 | | 6•y/6=8•6 | | 120=6(6+2x) | | -7+a=-26 | | -(-8-6t)=} | | 4l+32=4l×3 | | 7v^2+56v+105=0 |

Equations solver categories