-5x(3x+7)=14

Simple and best practice solution for -5x(3x+7)=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x(3x+7)=14 equation:


Simplifying
-5x(3x + 7) = 14

Reorder the terms:
-5x(7 + 3x) = 14
(7 * -5x + 3x * -5x) = 14
(-35x + -15x2) = 14

Solving
-35x + -15x2 = 14

Solving for variable 'x'.

Reorder the terms:
-14 + -35x + -15x2 = 14 + -14

Combine like terms: 14 + -14 = 0
-14 + -35x + -15x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(14 + 35x + 15x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(14 + 35x + 15x2)' equal to zero and attempt to solve: Simplifying 14 + 35x + 15x2 = 0 Solving 14 + 35x + 15x2 = 0 Begin completing the square. Divide all terms by 15 the coefficient of the squared term: Divide each side by '15'. 0.9333333333 + 2.333333333x + x2 = 0 Move the constant term to the right: Add '-0.9333333333' to each side of the equation. 0.9333333333 + 2.333333333x + -0.9333333333 + x2 = 0 + -0.9333333333 Reorder the terms: 0.9333333333 + -0.9333333333 + 2.333333333x + x2 = 0 + -0.9333333333 Combine like terms: 0.9333333333 + -0.9333333333 = 0.0000000000 0.0000000000 + 2.333333333x + x2 = 0 + -0.9333333333 2.333333333x + x2 = 0 + -0.9333333333 Combine like terms: 0 + -0.9333333333 = -0.9333333333 2.333333333x + x2 = -0.9333333333 The x term is 2.333333333x. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333x + 1.361111112 + x2 = -0.9333333333 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333x + x2 = -0.9333333333 + 1.361111112 Combine like terms: -0.9333333333 + 1.361111112 = 0.4277777787 1.361111112 + 2.333333333x + x2 = 0.4277777787 Factor a perfect square on the left side: (x + 1.166666667)(x + 1.166666667) = 0.4277777787 Calculate the square root of the right side: 0.65404723 Break this problem into two subproblems by setting (x + 1.166666667) equal to 0.65404723 and -0.65404723.

Subproblem 1

x + 1.166666667 = 0.65404723 Simplifying x + 1.166666667 = 0.65404723 Reorder the terms: 1.166666667 + x = 0.65404723 Solving 1.166666667 + x = 0.65404723 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 0.65404723 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 0.65404723 + -1.166666667 x = 0.65404723 + -1.166666667 Combine like terms: 0.65404723 + -1.166666667 = -0.512619437 x = -0.512619437 Simplifying x = -0.512619437

Subproblem 2

x + 1.166666667 = -0.65404723 Simplifying x + 1.166666667 = -0.65404723 Reorder the terms: 1.166666667 + x = -0.65404723 Solving 1.166666667 + x = -0.65404723 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -0.65404723 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -0.65404723 + -1.166666667 x = -0.65404723 + -1.166666667 Combine like terms: -0.65404723 + -1.166666667 = -1.820713897 x = -1.820713897 Simplifying x = -1.820713897

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.512619437, -1.820713897}

Solution

x = {-0.512619437, -1.820713897}

See similar equations:

| -1.9x^2=2.5-12.3 | | -t-4-(-2)t= | | -7t+5-7+8t= | | x*2+y*3=89 | | -6y+5x=8 | | Y=0.1X+10 | | x-6/18=(5-2) | | x=2x-246 | | -(v+7)+10= | | 2/5=t/10 | | 2/5=*/10 | | (2x-4)(1/3x^2-4/3x-4)=0 | | 2y+9=11 | | 102-28= | | -3z+(-6)z= | | (x+3)(x+18)=0 | | 35x^2-10y^2-100=0 | | 19x+99y=1900 | | 19x+99y=100 | | x+2x=204 | | 7x+2-9x= | | 180-74= | | 180-62= | | 180-41= | | 24y^2=3-14y | | xsqaured+y=4 | | 9(a+4)-2= | | 9x^2=6x+15 | | 176/11 | | -24x^3+6x-12x^2-8=0 | | (2x+3)squared=25 | | 12x^2=16x+28 |

Equations solver categories